Text Entry in Augmented and Virtual Environments

CS5760 Presentation

Michigan Technological University

Steven Ding

Outline

- Virtual Reality and Augmented Reality
- Common interactions
- Other Interaction interfaces

- Design and Methods
- Conclusion and Limitations
- References

Virtual Reality

Virtual reality (VR): an artificial **environment** that is experienced through sensory stimuli (as sights and sounds) **provided by a computer** and in which one's actions partially determine what happens in the environment

VR headset: mainly comprise of a stereoscopic **head-mounted display** (providing separate images for each eye) and head motion tracking sensors

Virtual Reality - Headset

https://store.steampowered.com/valveindex

Virtual Reality - Controllers

https://www.oculus.com/ https://www.vive.com/us/

Augmented Reality

Augmented reality (VR): a system in which the user has a **direct view** of their environment and where a specially constructed device allows **additional information** or graphical elements to be blended with the real environment in the form of an **overlay**

AR smart glasses: wearable computer glasses that add information alongside or to what the wearer sees

Augmented Reality - Smart Glasses

https://www.google.com/glass/tech-specs/

Augmented Reality - Smart Glasses

https://www.google.com/glass/tech-specs/

Augmented Reality - Controller

https://www.litho.cc/

Problems with common interactions

- Efficiency
- Precision
- Security
- Natural input
- Feedback

Interaction interfaces

- Acoustic
- Optics
- On-body
- Gesture
- ...

Speech/Pattern Recognition

Sound Localization

Speech/Pattern Recognition

Whoosh

Whoosh: non-voice acoustics for low-cost, hands-free, and rapid input on smartwatches.

Sound Localization

Raptapbath

Raptapbath: User interface system by tapping on a bathtub edge utilizing embedded acoustic sensors.

Raptapbath: User interface system by tapping on a bathtub edge utilizing embedded acoustic sensors.

- Pros
 - Low cost
 - Easy to deploy
 - Fast to process
- Cons
 - Limited precision

Interaction interfaces - Optics

Anywhere surface touch

Anywhere surface touch: utilizing any surface as an input area

Interaction interfaces - Optics

- Pros
 - High precision
- Cons
 - Requires more processing power
 - Potentially more noise

Interaction interfaces - On-body

Validation of a piezoelectric sensor array for a wrist-worn muscle-computer interface

Interaction interfaces - On-body

- Pros
 - Mobile
- Cons
 - Limited interaction area
 - Not comfortable

Interaction interfaces - Gesture

WiGest

Wigest: A ubiquitous wifi-based gesture recognition system.

Interaction interfaces - Gesture

- Pros
 - Natural express
 - High accuracy
- Cons
 - Limited information
 - High latency
 - Little real-time feedback

Design idea and Methods

Required attributes for text entry

- Efficiency
- Low latency
- High accuracy
- Real-time feedback

Design idea and Methods

- Acoustic sensors
- Mapping flat surfaces to QWERTY keyboards
- Sound Localization
 - o TDOA

Design and Methods - TDOA

Time Difference Of Arrival (TDOA)

Locating a source based on **intersections of hyperbolic curves** defined by the **time differences** of arrival of a signal received at a number of sensors is proposed.

Design and Methods - TDOA

Limitations

- 1. System not mobile
- 2. Requires calibration
- 3. Requires VR rendering

References

- 1. H. Abdelnasser, M. Youssef, and K. A. Harras. Wigest: A ubiquitous wifi-based gesture recognition system. In2015 IEEE Conference on ComputerCommunications (INFOCOM), pages 1472–1480. IEEE, 2015.
- 2. R. Booth and P. Goldsmith. Validation of a piezoelectric sensor array for a wrist-worn muscle-computer interface.CMBES Proceedings, 39, 2016
- 3. T. Niikura, Y. Watanabe, and M. Ishikawa. Anywhere surface touch: utilizing any surface as an input area. InProceedings of the 5th Augmented HumanInternational Conference, pages 1–8, 2014
- 4. G. Reyes, D. Zhang, S. Ghosh, P. Shah, J. Wu, A. Parnami, B. Bercik, T. Starner, G. D. Abowd, and W. K. Edwards. Whoosh: non-voice acoustics forlow-cost, hands-free, and rapid input on smartwatches. InProceedings of the 2016 ACM International Symposium on Wearable Computers, pages 120–127,2016
- 5. T. Sumida, S. Hirai, D. Ito, and R. Kawakatsu. Raptapbath: User interface system by tapping on a bathtub edge utilizing embedded acoustic sensors. InProceedings of the 2017 ACM International Conference on Interactive Surfaces and Spaces, pages 181–190, 2017.