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Abstract 
 

In this paper we explore ways to optimize an ambiguous keyboard that can be combined 
with an n-gram language model to create a familiar, yet efficient eyes-free text entry interface. 
We propose using genetic algorithms and the n-opt algorithm to generate candidate layouts that 
are optimized for tap clarity metrics. We will optimize layouts that have either four or six 
groupings of characters, and we will optimize both Qwerty-constrained and unconstrained 
layouts. We will then compare the performance of these layouts using simulated user data to 
narrow the field further for user testing. 
 
I. Introduction 
 

In today's society, text entry is a task that most people complete several times a day on a 
variety of devices. Smartphones, laptop computers, and smartwatches are all increasingly 
common. However, so are situations in which a user may not be able to visually see a keyboard. 
Perhaps their visual attention is needed elsewhere if they are multitasking, or perhaps the user 
has a visual impairment that prevents them from seeing the keyboard. While on a physical 
keyboard many people are able to touch type, this becomes much more difficult when the 
keyboard is virtual and the tactile separation between keys is removed. 
 

While some solutions to this problem, such as Apple's VoiceOver, allow users to explore 
the keyboard with audio feedback before confirming their selection for each character [3], our 
past research has focused on using an ambiguous keyboard to enable eyes-free text entry [5]. 
Ambiguous keyboards are those that place multiple characters on the same key (e.g. standard 
telephone keypads that placed the letters 'ABC' on the number 2, the letters 'DEF' on the number 
3, and so on). While some ambiguous keyboards require additional key presses to confirm the 
character within the grouping, others perform automatic disambiguation by determining the most 
likely word that corresponds to the sequence of selected keys. If the ambiguous "keys" are 
mapped to gestures that have little or no location dependency, the interface becomes much easier 
to use when visual feedback is not possible. 
 

In this paper we will explore different ways to optimize an ambiguous keyboard for use 
in an eyes-free text entry interface. We will do so by attempting to reduce disambiguation 
collisions while maintaining a certain level of familiarity in the groupings to aid learnability of 
the interface. We will combine ideas from past work on this topic as well as introduce novel 
ideas to create multiple proposed groupings that are likely to have success in future user trials. 



II. Background and Related Work 
 
Eyes-Free Text Entry 
 

As mentioned previously, there are several tried and tested methods for performing 
eyes-free text entry. One example is Perkinput [1], which converts multi-finger tap events into 
letters using Braille character encodings. The authors compared Perkinput to Apple's VoiceOver 
and found that users were significantly faster and more accurate using one-handed Perkinput. 
While a number of other methods use similar Braille encoding techniques, we chose to remove 
the prerequisite Braille knowledge to target situationally impaired users as well as the portion of 
visually impaired users that aren't familiar with Braille.  
 

In past work, we proposed an ambiguous keyboard called Tap123 that was based strictly 
on a Qwerty keyboard [5]. Users would indicate the row of the keyboard by tapping with either 
one, two, or three fingers, and they would indicate the side of the keyboard by the side of the 
screen they tapped on (e.g. a one-finger tap on the left side of the screen corresponded to q, w, e, 
r, and t, while a two-finger tap on the right side corresponded to h, j, k, l, and apostrophe). After 
recognizing a right swipe gesture to designate the end of a word, the interface would perform 
disambiguation to determine the most likely word given the tap sequence and previously typed 
text. While users were able to achieve error and entry rates that were comparable to other 
methods, we noticed that several common words had identical tap sequences and would require 
users to scan through the list of disambiguated words if their intended word was not deemed 
most probable. Frequently, this event required users to go back and retype the word if they 
moved on before noticing or to slow their entry rate to pay closer attention to the resulting words, 
both of which reduced the performance of the interface. This observation led us to consider 
optimizing the character groupings to reduce disambiguation collisions instead of simply using 
groupings based on the Qwerty layout.  

 
Keyboard Optimization 

 
There has been a considerable amount of past research done on the topic of optimizing 

keyboard layouts, with several papers introducing pieces of information that are directly relevant 
to this particular application. The first of these papers, written by Lesher et al. [7], shows that 
fully enumerating and evaluating every possible set of groupings is computationally infeasible, 
but proposes an algorithm that can be used to efficiently find locally optimized groupings in 
ambiguous keyboards. The first step in their algorithm is to compute a confusability matrix for 
some corpus of English text. They do this by stepping through the corpus one character at a time 
and keeping track of how frequently a different character is predicted as more likely than the 
actual next character in the text. The authors define the mutual confusability of two characters α 
and β as  



,(α, ) C(α, ) C(β, )M β =  β +  α  
 
where  is the number of times α was mistaken for β, and  is the reverse. They go(α, )C β (β, )C α  
on to further explain that for any number of characters placed in a single ambiguous group, the 
total mutual confusability is the sum of the mutual confusabilities between each pair of 
characters. 

 
Once the confusability matrix is computed, Lesher et al. [7] run their "n-opt" algorithm. 

The algorithm starts with a valid arrangement of characters into groupings, and then checks 
every possible tuple of n characters to see if a particular shuffle of those characters will result in 
a better overall arrangement according to whatever metric is being optimized (in this case, the 
confusability of the groupings). If any swaps are made during the course of a single pass, the 
pass repeats once it has finished. The algorithm continues until a pass completes with no swaps 
being made. The n-opt algorithm requires factorially increasing computations for higher values 
of n; the highest pass completed in the paper was five-opt. Since the n-opt algorithm only finds 
local optimums, the authors start with many initial arrangements and run the two-opt algorithm 
before running five-opt on the best result. 
 

An alternative approach to keyboard optimization is the use of genetic algorithms 
proposed by Gong and Tarasewich [6]. In this paper, the authors compared an ambiguous layout 
that was constrained to be in strict alphabetical order with a layout that was unconstrained and 
freely optimized. While they were able to fully enumerate the possible constrained layouts, they 
used genetic algorithms to optimize the unconstrained layout. They first generated a random 
population of layouts from which to start. Each successive generation of layouts was the product 
of reproduction, crossover, and mutations from the prior generation. The authors report that this 
genetic algorithm was quite successful at locating optimal or near optimal layouts. The authors 
also found that the constrained layout aided users' ability to learn the interface since it was more 
familiar.  
 

Other authors found similar results when comparing freely optimized keyboards to ones 
with familiarity constraints. For example, Bi et al. [2] performed a study with a Qwerty 
keyboard, a "Quasi-Qwerty" keyboard, and a freely optimized keyboard. The Quasi-Qwerty and 
freely optimized keyboards were designed to minimize the travel distance for a user's finger, 
thereby increasing the entry rate. However, the Quasi-Qwerty layout had the constraint that 
letters could not move more than one row and one column from their initial Qwerty position. The 
authors found that while the Quasi-Qwerty layout had an improved movement efficiency from 
the standard Qwerty layout, it was not as efficient as the freely optimized layout. However, 
during user trials, the authors found that users took the longest to locate the initial letter of a 
word on the freely optimized keyboard, followed by the Quasi-Qwerty layout, and finally the 
standard Qwerty layout. The authors concluded that the Quasi-Qwerty layout was effective at 



obtaining an increased movement efficiency while not sacrificing too much time in the initial 
visual search. 
 
Multi-Parameter Optimization 
 

Instead of simply enforcing a concrete Qwerty restriction, Dunlop and Levine [4] chose 
to optimize their keyboard layout on three different parameters: finger travel distance, tap 
ambiguity, and familiarity. They minimized finger travel distance by calculating the product of 
distance between letter combinations with their frequency in the language corpus and summing 
these products for a given layout. While this metric is relevant to many optimization problems 
and is common in related work, it does not apply to an ambiguous keyboard that is not 
location-dependent. Dunlop and Levine also calculated a metric on tap ambiguity to reduce the 
number of commonly interchanged letters that were adjacent in the layout. They first created a 
table of these commonly interchanged letters, which they referred to as bad bigrams, or 
"badgrams". After counting the frequency of badgrams in same-length words in the text corpus, 
they converted each to a probability by dividing by the total number of badgram occurrences. 
The authors defined their tap clarity metric for a given keyboard layout by summing the badgram 
probabilities for each pair of adjacent letters and subtracting this sum from one. We can adapt 
this metric for ambiguous keyboards to reduce the number of badgrams that belong to the same 
grouping as opposed to adjacent keys. The final metric Dunlop and Levine used in their 
optimization was familiarity. They calculated the similarity of a given layout to the Qwerty 
layout by summing the squared distances between each key's position and its Qwerty position 
and then normalizing the results to the range between 0 and 1. This allowed for potentially 
high-scoring layouts that had most letters near their Qwerty positions with a few exceptions that 
would have been restricted by the Quasi-Qwerty constraints. 
 

With these three metrics, Dunlop and Levine [4] used Pareto front optimization to find 
candidate layouts. They defined a small set of initial layouts that were then taken through 2000 
iterations of changes. At each iteration, a certain number of keys were swapped and the metrics 
recalculated. The algorithm kept track of the set of "Pareto optimal" layouts, which were those 
that for all other layouts in the set, there was no layout that was better on all three metrics. After 
the final set, or Pareto front, was formed, the authors selected the keyboard nearest the 45° line 
(the line with all metrics equal), which they determined was the best overall layout given the 
metrics. 
 

Qin et al. [8] also used a Pareto front to perform optimization, but they did so in two 
dimensions and with an ambiguous keyboard. They defined their clarity metric for a given word 
as the frequency of that word in the corpus divided by the total frequency of identical tapping 
sequences given an ambiguous layout. They then defined the clarity of a layout as the sum over 
all words of the product of word frequency and word clarity. The second metric used in this work 



was a typing speed metric based on the relative location of frequent character combinations. As 
with the previous paper, this is not relevant to interfaces that remove location dependency. 
Instead of choosing the layout closest to the 45° line in the Pareto front as done by Dunlop and 
Levine [4], Qin et al. opted to select the layout that had the highest average of normalized 
metrics. Another difference between these works was that instead of optimizing on a third metric 
that indicated similarity to Qwerty, Qin et al. enforced a strict adherence to the Qwerty ordering 
of characters and split each row into three ambiguous groups. This created a total of nine groups, 
which is referred to as a T9 ambiguous keyboard. 
 
III. Proposed Methodology 
 

Given this prior research, we propose the following methodology for optimizing an 
ambiguous keyboard for eyes-free text entry.  
 
Corpus Analysis 
 
We will first perform analysis on the corpus of text written on mobile devices released by 
Vertanen and Kristensson [9]. We will combine the ideas of Lesher et al. [7] and Dunlop and 
Levine [4] to generate a table of badgrams given past context of what was typed. We will iterate 
through each phrase in the corpus one word at a time. Since we intend to perform word-level 
disambiguation as opposed to character-level as Lesher et al. did, we will use an n-gram 
language model to generate the most likely word given the previous n words. We will use 
software based on the VelociTap decoder proposed by Vertanen et al. [10] to perform these 
predictions. Since in practice the disambiguation algorithm will know the number of characters 
based on the number of keystrokes or input actions, we can restrict our search to that word 
length. For each word that is deemed more probable than the true word, we will track any 
badgrams (single letter differences from the true word) in a table and compute their probabilities 
as done by Dunlop and Levine [4]. As Lesher et al. did, we will compute the mutual 
confusability of two characters α and β as the sum of the frequencies of badgram αβ and 
badgram βα. 
 
Performance Metrics 
 

We will evaluate our keyboard designs primarily with the metric of tap clarity, which will 
be the best indicator of the performance of an experienced user entering text with an ambiguous 
and location-independent interface such as Tap123 [5] for a given layout. This is because higher 
values of tap clarity will result in fewer mistakes during disambiguation. While other studies 
have measured entry speed by computing the distance between frequently sequential characters, 
this metric is not relevant to a location-independent entry method since groups of characters are 
mapped to specific gestures as opposed to locations on the screen. 



 
We propose two separate methods of calculating tap clarity. The first is a slight 

modification of Dunlop and Levine's definition [4] to suit an ambiguous keyboard. We will 
define this badgram clarity as: 

,1 Claritybadgram =  −  ∑
 

∀i,j∈α
pij  

where is the previously calculated badgram probability if i and j are letters in the same group,pij  
or 0 otherwise. This also conforms with Lesher et al.'s [7] definition of mutual confusability as 
the sum of the pairwise mutual confusabilities for each letter in a group. The main benefit of this 
method of calculation is that it is relatively computationally simple. It only takes a series of 
pairwise table lookups, bounded by the number of characters in the alphabet. However, it may 
oversimplify the calculation by only taking into account instances of single-letter differences 
between words. For example, Dunlop and Levine give "for/fir" as an example of easily 
confusable words with a Qwerty layout, creating an IO badgram. However, this would not take 
into account combinations such as "for/due" that had the same sequence of gestures in the layout 
defined in Tap123 [5]. 

 
The second method of calculating tap clarity is based on the method used by Qin et al. [8] 

for their ambiguous layout. We will modify their equation to use n-gram probabilities instead of 
frequencies for each word. When initially iterating through each word in the corpus, we will 
calculate and store the n-gram probability of each word of the same length as the true word. We 
can then iterate through these stored word/probability pairs for a given layout L and calculate the 
word clarity: 

,(w) P (w | Sequence) C =  = P (w)

(a)∑
 

a∈A
P

 

where w is the true word, A is the set of words with the same gesture sequence as w given L, and 
P(x) denotes the n-gram probability of word x. Since the context and therefore the n-gram 
probabilities may change between occurrences of each true word in the corpus, we cannot simply 
multiply the clarity of a word by its frequency as Qin et al. did, but we must instead treat each 
occurrence as a separate w when we compute the sequence clarity of layout L as the simple sum 
of word clarities: 

,(L) (w ) Claritysequence = 1
M ∑

M

j=1
C j  

where M is the number of words in the corpus, including repeated words. Multiplying the sum by 
the factor  transforms the possible values of this metric to the range [0, 1], since word clarity1

M  
is maximized at 1 and minimized at 0. While this sequence clarity metric is a better 
representation of potential conflicts than the badgram clarity, it is significantly more 
computationally expensive, since it requires an iteration through the entire corpus to evaluate 
every layout instead of the simple table lookups (the training set contains nearly 13 million 



words). We will attempt to calculate the sequence clarity for each layout, but if it proves to be 
too expensive we will fall back to the badgram clarity. 
 
Keyboard Design 
 

Instead of optimizing the layouts on another metric that demonstrates their similarity to 
the Qwerty layout, we propose optimizing a layout with similar constraints to the Quasi-Qwerty 
[2] layout as well as a layout that is unconstrained. A few of the related works we discussed [2, 
6] showed that users had a much more difficult time learning unconstrained layouts. However, 
we conjecture that a location-independent method may not have the same benefits from a 
similarity to Qwerty. The character groupings used in Tap123 [5] are shown in Figure 1a. Our 
Qwerty-constrained layout will allow a character to move one group in any direction from this 
baseline position. For example, the letter 'E' could move down to the group with 'A', or to the 
right to the group with 'Y', but not down and right to the group with 'H'. In addition to this 
six-grouping (T6) layout, we will optimize a T4 layout. While only having four groups of 
characters may make disambiguation more difficult, it would allow a user to enter text with a 
single hand, as opposed to Tap123's two-handed technique. A T4 approach would also enable us 
to remove location dependency completely, with the user simply tapping with between one and 
four fingers. We will also optimize both constrained and unconstrained T4 layouts, with the same 
constraint as the T6 layout and the Qwerty-based groupings shown in Figure 1b. 
 

 
Figure 1a. Qwerty-based T6 groupings used 

in Tap123. 
 

 
Figure 1b. Qwerty-based T4 groupings we 

plan to use in this study. 

To actually optimize the keyboards, we will try two different approaches. The first 
approach will be based on the n-opt algorithm developed by Lesher et al. [7], but we will modify 
it to suit an ambiguous keyboard. In an ambiguous keyboard, all keys need not have the same 
number of characters. Therefore, when running an n-opt pass, we will still select every 
combination of n characters, but we will need to explore additional ways to shuffle them. For 
example, in the original paper if we selected α and β, the two options would be α in position one 
and β in position two, or the reverse. With an ambiguous layout, however, we also need to 
consider α and β both in position one, or both in position two. This will increase the 
computational complexity of a single comparison within a pass, especially for higher values of n, 
but a pass will require fewer comparisons overall since shuffling two characters on the same key 
will not result in any gains. We will use the same approach that Lesher et al. did in which we will 



run the two-opt algorithm on a large number of initial layouts and then run a five-opt algorithm 
on the best result. 
 

The second approach we will use to optimize our layouts will be the genetic algorithm 
(GA) approach used by Gong and Tarasewich [6]. While the authors mentioned top solutions in 
the population "mating" to produce the next generation as well as the possibility of mutations, 
they do not specify the details of their algorithm. In each generation of our genetic algorithm we 
will implement reproduction as follows. The highest scoring layout on the clarity metric will stay 
the same; we will refer to this layout as L. Each other layout will randomly choose some 
character α. It will then choose a character β that is in the same group as α in the layout L. It will 
swap it with another random character γ that is in the same group as α in this layout but not in the 
layout L. For example, let the layout in Figure 2a represent a hypothetical top layout L, and the 
layout in Figure 2b represent the layout we are modifying from this generation to the next. The 
algorithm could select 'D' as α, and character 'E' as β, since they are in the same group in L but 
different groups in the current layout. It could then select character 'F' as γ, since it is the in the 
same group as 'D' in the current layout but a different group in L. The algorithm would then swap 
'E' with 'F' in the current layout to produce a member of the next generation, shown in Figure 2c. 
Once the mating process is complete, each layout in the new generation will have a small chance 
to mutate, swapping a random two characters. The actual value of this chance will be tuned using 
development data and observing how the clarity of the population progresses from one 
generation to the next. The clarity of each layout will be recalculated at the start of each 
generation to determine the new top-scoring layout L. 
 

 
Figure 2a. A hypothetical top-scoring 

layout L in a genetic algorithm generation. 
 

 
Figure 2b. A hypothetical "mating" layout 

in a genetic algorithm generation. 
 

 
Figure 2c. One potential result of mating the  
layout in Figure 2b with the one in Figure 2a. 

 'F' and 'E' have swapped positions. 
 



Performing both the n-opt and genetic algorithms for constrained and unconstrained T4 
and T6 layouts will result in a total of eight candidate layouts that will advance to the next stage 
of evaluation. 
 
Keyboard testing 
 

Once the optimization algorithms have chosen the eight candidate layouts they will each 
be evaluated using simulated user input. We will use the test portion of the data set released by 
Vertanen and Kristensson [9] and the modified decoder previously used to determine the n-gram 
probabilities to disambiguate text entered by a simulated user. Since the purpose of this 
optimization is to increase text entry rate and reduce error rate by reducing disambiguation 
conflicts and not to explore error correction techniques, the simulated user will not make errors. 
For each phrase in the test data set, we will pass the proper sequences of groups into the decoder 
one word at a time, allowing it to use both the sequences and context to disambiguate. We will 
evaluate the performance of each candidate layout on its average word error rate without 
correction. 
 

Once the candidate layouts have been further narrowed down, we will conduct a between 
subjects longitudinal user study in which users enter text with one of the layouts. As in the study 
of Tap123 [5], the text will grow increasingly difficult as users learn the entry method. We will 
investigate any potential familiarity benefits in a location-independent entry method by 
comparing the best constrained layout to the best unconstrained layout. We will also compare 
users' ability to learn and use a T4 layout and a T6 layout. Instead of the bimanual entry 
performed with Tap123, users will enter text with a single hand to emulate the common 
occurrence of holding the device with the other hand. 
 
IV. Conclusions 
 

This paper explored multiple potential methods for optimizing a location-independent, 
eyes-free, ambiguous text entry method. We discussed using variations on the n-opt algorithm in 
addition to genetic algorithms to generate competitive T4 and T6 ambiguous layouts, both 
unconstrained and constrained to be similar to Qwerty-based layouts. We will evaluate these 
layouts first by metrics of n-gram tap clarity, then with simulated user data, and finally with a 
user trial. Through this optimization process we will explore the tradeoffs that exist between 
computation time and quality of the layouts, as well as between accuracy and ease-of-use in 
practice for the final layouts. 
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