
The Impact of Word, Multiple Word, and Sentence Input on
Virtual Keyboard Decoding Performance

Keith Vertanen†, Crystal Fletcher†, Dylan Gaines†, Jacob Gould†, Per Ola Kristensson‡

†Department of Computer Science ‡Department of Engineering
Michigan Technological University University of Cambridge

Houghton, Michigan, USA Cambridge, United Kingdom
{vertanen | tafletch |dcgaines | jcgould}@mtu.edu pok21@cam.ac.uk

ABSTRACT
Entering text on non-desktop computing devices is often done
via an onscreen virtual keyboard. Input on such keyboards
normally consists of a sequence of noisy tap events that spec-
ify some amount of text, most commonly a single word. But
is single word-at-a-time entry the best choice? This paper
compares user performance and recognition accuracy of word-
at-a-time, phrase-at-a-time, and sentence-at-a-time text entry
on a smartwatch keyboard. We evaluate the impact of differing
amounts of input in both text copy and free composition tasks.
We found providing input of an entire sentence significantly
improved entry rates from 26 wpm to 32 wpm while keeping
character error rates below 4%. In offline experiments with
more processing power and memory, sentence input was recog-
nized with a much lower 2.0% error rate. Our findings suggest
virtual keyboards can enhance performance by encouraging
users to provide more input per recognition event.

ACM Classification Keywords
H.5.2 Information interfaces and presentation: Input devices
and strategies

Author Keywords
Text entry; virtual keyboard; decoder; smartwatch

INTRODUCTION
The auto-correcting on-screen virtual keyboard is a ubiquitous
text entry method for mobile devices. Users typically interact
with a touchscreen keyboard by providing input one word at a
time. After a word is specified, a statistical decoder searches
for the most probable word given the observations recorded
by the keyboard. The oldest and most common approach is to
enter a word via a sequence of discrete taps [7]. Alternatively a
word can be continuous gesture over its letters on the keyboard
[15, 43]. The best word hypothesis is then output with the user

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
CHI 2018, April 21–26, 2018, Montreal, QC, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5620-6/18/04. . . $15.00
https://doi.org/10.1145/3173574.3174200

either carrying on to the next word, or taking some corrective
action if the word was misrecognized.

As noted by Vertanen et al. [34], this word-at-a-time approach
could slow users as they may spend time monitoring each
word recognition result. Further, the word-at-a-time approach
provides the recognizer with only one word’s worth of noisy
observations from which to infer the user’s intended text. It is
plausible the auto-correct algorithm may be able to make more
accurate guesses if it can guess a sequence of words since later
words can influence the search for the most likely hypothesis
that hopefully matches the user’s intention.

We explore allowing users to modulate the amount of input
given to the auto-correct decoder. We are interested in inves-
tigating if such modulation can reduce error rate or increase
entry rate. We explore allowing users to control the amount of
words sent to the auto-correct decoder. We hypothesize that
sending several words to the decoder may both increase entry
rate by reducing the number of motor actions and improve de-
coder accuracy by providing more information about the user’s
intended word sequence. We find that such modulation does in-
deed increase entry rate significantly and in a follow-up study
with both a text copy task and a composition task we find that
users prefer either a word-at-a-time or a sentence-at-a-time
approach. In addition, we conduct recognition experiments to
investigate under what circumstances providing more input to
the decoder actually improves performance.

Mobile text entry methods are increasingly being designed
for hardware relying on uncertain sensing of user input. One
example is optical see-through head-mounted displays, which
sense the user’s hand or finger location using body-fixed depth
sensing. Another example are small wearable devices, such as
pendants or smartwatches, where the form factor makes pre-
cise direct control noisy, even though the sensor itself may be
accurate. We propose using a smartwatch as a testbed for inves-
tigating virtual keyboard decoding as it provides sufficiently
challenging noisy tap observations from users due to the very
small form factor. We adapt a state-of-the-art touchscreen
keyboard decoder [34] so that it can run on a smartwatch and
decode with high accuracy and low latency. This commercial-
grade testbed ensures validity in the experiments and relevance
for future hardware platforms which may have to handle noisy
sensing, noisy user control, or both.

mailto:Permissions@acm.org
https://doi.org/10.1145/3173574.3174200

RELATED WORK
Text entry has attracted considerable research interest (see [18,
44, 20] for surveys and overviews). In general, the objective of
text entry is to allow users to write as quickly and as accurately
as possible, although in recent years it has been proposed
to target text entry rates that achieve the inviscid text entry
rate, that is, the text entry rate which is rate-limited by users’
creativity [14]. Importantly, many text entry methods proposed
in the literature have failed to achieve text entry rates that
surpass mainstream mobile text entry methods [14, 12].

Intelligent text entry methods infer [7] or predict [6] users’
intended text from noisy input [11]. As mobile devices tran-
sitioned into capacitive touchscreen devices and processing
power increased, such text entry solutions have become ubiq-
uitous in commercial mobile keyboard systems. Typically, the
user either taps on a touchscreen keyboard or uses a gesture
keyboard, which allow users to write text by articulating word
gestures across a touchscreen keyboard [41, 15, 10, 43]. By
allowing for noisy user input, intelligent text entry methods
are more likely to achieve higher entry rates [11, 12].

An orthogonal research dimension is keyboard optimization.
Early attempts focused on minimizing average movement time
between keys [21, 39]. Later approaches considered additional
factors and investigated alphabetical ordering [45] in order to
make it easier for users to learn an unfamiliar keyboard layout
(see Zhai et al. [40] for an early survey and Bi et al. [3] for
further work in this direction). This was improved further
by for example considering optimization for thumb-typing
ergonomics [22], multiple languages [4], and auto-correct [2]
and gesture keyboard performance [42, 24, 25].

Decoding
In this paper we focus on inferring users’ intended text from
noisy tap data on virtual keyboards. When this process is
carried out using a probabilistic method it is known as decod-
ing. At a very high-level, the objective is to identify the most
probable character sequence C∗ given a set of observations
(for instance, key presses) O:

C∗ = argmax
C∈C

[P(O|C)P(C)] , (1)

where C is the set of all permissible character sequences in the
system. P(O|C) is the keyboard touch model and P(C) is the
language model. Calculating Equation 1 necessitates a decod-
ing process. Typically this decoding process is carried out in a
similar vein as classic speech recognition decoding [38, 23, 9].
Goodman et al. [7] proposed a decoder that used a keyboard
touch model based on two-dimensional Gaussian distributions
for each key and a character-based language model to substi-
tute touch point observations for letter keys. Kristensson and
Zhai [16] proposed an alternative approach which relied on
geometric pattern matching.

Vertanen, et al. [34] investigated sentence-at-a-time touch-
screen input using a statistical decoder named VelociTap. Ver-
tanen, et al. tested delimiting words via a space key, by swip-
ing to the right, or by inferring space automatically. Inferring
spaces was found to be the fastest while using a space key was

found to be the most accurate. VelociTap accurately recog-
nized sentences on keyboards down to the size of a smartwatch
(but in [34] was tested on a phone). Recognition was proxied
to a powerful desktop computer. While Vertanen, et al. conjec-
tured that a sentence-at-a-time approach might be faster than
word-at-a-time input, this was not explicitly tested.

A fundamental problem with decoding-based keyboard input
is failure of the algorithm to identify the user’s intended word,
sometimes called the “auto-correct trap” [35]. Weir et al. [35]
found it was possible to reduce error rates in keyboard decod-
ing by allowing users to modulate their certainty by pressure.
The harder the user pressed on a key, the more the decoder
would believe the touch point observation belonged to the
pressed key. In addition, Weir et al. [35] found that it was
possible to achieve a small gain in accuracy by using a touch
point model based on Gaussian Process regression.

Smartwatch Text Entry
Smartwatches have recently gained popularity and as a conse-
quence, researchers have investigated methods of efficiently
entering text on them, see Arif and Mazalek [1] for a recent
and extensive survey of smartwatch text entry.

The decoding-based keyboard VelociTap [34] was the first
to suggest and demonstrate the viability of typing on a full-
key QWERTY keyboard on a smartwatch aided by a decoder.
Later, Gordon et al. [8] presented a smartwatch keyboard
based on statistical decoding that supported tap input, gesture-
keyboard input, and word prediction. In a user study, partici-
pants wrote at over 22 wpm with a low error rate.

In a more recent study, Yi et al. [37] collected touch data
on a variety of tiny touchscreen keyboard sizes. They used
the data to create a touch model which was combined with a
language model to produce a touchscreen keyboard decoder.
User studies demonstrated fast entry rates of over 27 wpm with
low error rates. Finally, Turner at al. [27] used the commercial
gesture keyboard Swype to investigate tap and trace input on
a smartwatch. In a user study, participants wrote at 37 wpm
using the trace method and 27 wpm using the tap method.

Text Entry Evaluation
Text entry methods are typically evaluated in controlled exper-
iments using a transcription-task where users copy stimulus
sentences (or phrases) as quickly and as accurately as possible.
MacKenzie and Soukoreff [19] suggested stimulus phrases
should be standardized across studies and released a phrase set
for this purpose. Vertanen and Kristensson [31] later released
an alternative phrase set based on genuine mobile email texts,
which are more representative of text users actually write on
mobile devices, although the performance between phrase sets
did not differ significantly in a crowdsourced user study [13].

Later research has investigated further ways of sampling rep-
resentative phrases based on criteria such as word clarity [36].
While a transcription task ensures high internal validity, it
inevitably does not fully model actual typing, which includes
the cognitive effort of composing the text. A complementary
evaluation strategy is therefore to use a composition task, in
which users are asked to compose messages [32].

SYSTEM
Our system is compromised of two parts, a core recognition
component and a virtual keyboard interface designed for a
smartwatch. We describe each part in turn.

Noisy Tap Recognizer
Our input method uses a recognition-based approach that at-
tempts to infer a user’s intended text from a noisy sequence
of tap locations. Our method is based on the VelociTap touch-
screen decoder [34]. VelociTap uses a keyboard touch model
that assigns a probability to all possible keyboard characters
for every tap. The keyboard model assigns probabilities based
on a tap’s location and two-dimensional, axis-aligned Gaus-
sians centered at each key center. The x- and y-variances are
configurable but tied between all keys.

Every tap sequence produces many recognition hypotheses.
The probability of these hypotheses under the keyboard model
is combined with their probability under a character and word
language model. VelociTap supports the insertion of all pos-
sible characters anywhere in the input sequence. Insertions
incur a configurable penalty. In order to better support space-
less multi-word input, VelociTap also has a separate space
insertion penalty. Taps can also be deleted without generating
any output. Deletions incur a configurable penalty.

VelociTap was originally designed for sentence decoding with
words separated by a space bar, a right swipe gesture, or with
no explicit separation. We modified VelociTap to recognize a
single or multiple words from a sequence of virtual keyboard
tap locations. This involved allowing surrounding text to
influence the recognition process (e.g. three taps are more
likely to be “day” if the previous text is “have a good”).

During the decoder’s search, a character sequence may have
zero or more spaces inferred somewhere in the sequence. This
delimits the sequence into one or more words. The character
sequence is scored by a character language model and the
delimited word sequence is scored by a word language model.
Any words that are out-of-vocabulary (OOV) are replaced by
an unknown word prior to scoring by the word language model
and also assessed a configurable OOV penalty.

We tuned the configurable parameters of the decoder on data
collected from the studies reported in [34]. We further fine
tuned them on development data recorded by three of the
authors on the watch used in the study reported here.

We trained our language models on billions of words from twit-
ter, Usenet, blogs, social media, movie subtitles, and forum
posts. Our character 12-gram model used Witten-Bell smooth-
ing and had a vocabulary of a-z, the characters ’,.?! and a
space pseudo-word. Our word 4-gram model used modified
Kneser-Ney smoothing and a vocabulary of 100 K words1.

In order to fit within the memory limits of a watch, we heavily
pruned our models using entropy pruning [26]. During pruning
we used lower order Good-Turing smoothed models [5]. The
character model had 588 K N-grams and a gzipped ARPA text

1http://keithv.com/data/vocab_100k.txt

Figure 1. Example of writing “i am waiting for aiden”. The user typed
“waiting for” as a multi-word input (left). Swiping right recognized the
words. Uf a finger is down, the nearest key appears in a large font (mid-
dle). After typing the remaining letters, the user obtains “aiden” (right).

format size of 5.5 MB. The word model had 766 K N-grams
and a size of 6.3 MB.

In our previous work [34], we forwarded mobile device in-
put to a desktop computer for recognition. In this work we
performed recognition on-device. To better support on-device
recognition, we improved our decoder’s efficiency by reducing
how many objects were created and destroyed and by adding
binary serialization of file assets such as the language models.

Smartwatch Keyboard
We conducted all experiments using a Android Wear app we
developed for the Sony Smartwatch 3. This watch has a 29 mm
square touchscreen with a resolution of 320× 320. It has a 4-
core 1.2 GHz ARM CPU and 512 MB of memory. Recognition
was performed locally on the watch.

Our QWERTY keyboard is 29 mm× 13 mm (Figure 1). Our
keyboard has the letters a-z with apostrophe in the lower right.
We use white labels at the center of each key with no key
outlines. This yields an effective key size of 2.9 mm× 4.3 mm.
To be considered a valid tap, the touch down and up locations
had to be in the keyboard area or just slightly above (within
3 mm). The device vibrates for 50 ms after each tap or swipe.

The area above the keyboard shows previously recognized text
as well as the nearest keys for the current unrecognized input.
When a user’s finger is in contact with the screen, the label
of the nearest key is displayed in a large font alpha channeled
over the result area. This allows the user to reposition their
finger despite the visual occlusion caused by their finger.

Users request recognition by swiping to the right anywhere
on the screen. When recognition is in progress, the screen
turns green and input is ignored until recognition completes.
Recognition results are added to the text area above the key-
board. Swiping to the left during input deletes the previous
tap’s nearest key text and removes it from the observations
sent to the decoder. Swipes 3 mm or longer were classified as
up, down, left, or right by the angle from the starting position.

USER STUDY: INPUT AMOUNT
Our study investigates the human and recognition performance
impacts of word, multiple word, and sentence input. Our goal
is to fairly compare the entry and error rate potential of, and
user preference for, different input sizes. Our intention is not
to propose or beat an existing method. Rather, we want to
find out whether there exist human and recognition accuracy
benefits to larger input sizes. While larger input has been

http://keithv.com/data/vocab_100k.txt

supported in commercial keyboards for a number of years, no
study has investigated its performance characteristics.

In Experiment 1 we exposed users to all three input amounts by
having them enter memorable sentences using each approach.
Once users had experienced the different input amounts, in
Experiment 2 we investigated what input behavior they would
use in practice. In Experiment 2 we also wanted to understand
if users’ behavior was affected by the experimental task. Typi-
cally in text entry experiments participants are given the task
of copying memorable text. In Experiment 2 we compare this
with a composition task in which participants invented text.

Correction Features
In both experiments, a left swipe deleted the previous tap
during entry, but prior to recognition. We allowed this since:
1) it did not favor any condition, 2) it was quick to perform, 3)
it provided a measure to compare input behavior in Experiment
2’s copy and composition tasks, and 4) it is a viable correction
method for a range of devices and use scenarios.

We decided not to allow users to backspace or otherwise cor-
rect recognition errors. Further we did not provide a sug-
gestion bar that might offer recognition alternatives or word
completions. We did this for the following reasons:

1. While backspacing errors and suggestion bars provide
a familiar correction method for word input, they may not
constitute the best approaches for multiple word or sentence
input. How to design correction interfaces to best support
larger input sizes is an open question. There are a variety of
ways this might be done, e.g. selecting from a word confusion
network [29] or automatic positioning a correction within the
original text [28, 30]. We designed our study to test the role
of input size in isolation. If we had varied both input size and
the correction interface in each condition, it would be difficult
to determine how much each contributed to any difference.

2. We wanted to reduce variability not associated with the
input size. In our experience, participants in text entry studies
often work to fix most errors leading to highly variable entry
times, especially when errors cascade. By removing post-
recognition correction, we could more accurately measure
participants’ input speed.

3. While these features are common on today’s virtual key-
boards, future devices or challenging use scenarios may pre-
clude their use, e.g. touch interaction may be on-body, on
uninstrumented surfaces, or used while visually attending to
your environment. We argue informing the design of future
devices or use scenarios is best done by understanding how
interaction building blocks work in isolation rather than when
combined into one particular interface design.

Participants, Metrics, and Study Tasks
We recruited 24 participants via convenience sampling. Par-
ticipants took part in a one-hour session and were paid $10.
Participants were aged 18 to 21 (mean 18.5). 13 identified as
male, 7 as female, and the rest did not answer. 20 were right
handed. All participants strongly agreed that they were fluent
English speakers. 18 participants had never used a smartwatch,
3 used one occasionally, and 3 used one frequently.

We measured input errors using Character Error Rate (CER).
CER is the number of character insertions, deletions, and
substitutions required to change the recognized text into the
reference text, divided by the characters in the reference (mul-
tiplied by 100). We also wanted to measure the error rate prior
to any recognition. We achieved this by calculating what we
call the literal CER. The literal CER is found by first identify-
ing the nearest key to each tap observation (touch point) from
the user and then computing the CER between the stimulus
text and the reference text, ignoring any spaces in the text.

We measured entry rate using words-per-minute (wpm) with
a word being five characters including space. We calculated
entry time from the first tap on the keyboard screen to when
the final recognition result was displayed.

All participants wore the watch on their non-dominant hand.
Participants were asked to type using the index finger of their
dominant hand. Similar to [17], we measured the width of
participants’ index finger at the base of their fingernail with
a digital caliper. Participants were asked to rest their watch-
wearing arm on the top of the desk they were seated at.

Participants first filled out a two-page questionnaire asking
about their previous experience with desktop and mobile text
input. After each condition in all experiments, participants
filled out a one-page questionnaire. This questionnaire asked
them to rate how quickly and accurately they felt they entered
text in that condition. It also asked for open comments.

In all but one condition, participants entered memorable sen-
tences from the mem1-5 sets in the Enron mobile data set
[31]. Due to the small screen size, we limited sentences to
those with six or fewer words. All sentences were shown in
lowercase with no punctuation aside from apostrophes. Each
participant received sentences chosen at random from a set of
143 sentences. No sentence was given to a participant more
than once. Participants could spend as long as they wanted
memorizing a sentence. The sentence disappeared and could
not be referred to again once keyboard input began. In one
condition, participants composed their own mobile messages.
We used the composition procedure described in [33].

Unless otherwise stated, we tested for significance using a
repeated measures analysis of variance. For significant main
effects, we used Bonferroni corrected post-hoc tests. In some
cases, we report results with ± values giving 95% confidence
intervals (CIs) of the mean calculated using a t-distribution.

EXPERIMENT 1: FIXED INPUT AMOUNT
This was a within-subject experiment with three counterbal-
anced conditions:

• WORD – Participants were asked to use a word-at-a-time
entry approach.
• TWOWORD – Participants were asked to enter text two

words at a time. This was done by entering both words
without any input signifying the space between the words.
In the case of sentences with an odd number of words,
participants were told to enter the final word by itself. We
conjecture in real-world use, users may segment text into
multiple word chunks based on text aspects such as syntax

Figure 2. Prompts before each task (top) and post-input feedback (bot-
tom) for the three conditions in Experiment 1: WORD (left), TWOWORD
(middle), and SENTENCE (right).

or semantics. However for purposes of this experiment, we
decided on an explicit two-word input strategy to provide
easy-to-follow and unambiguous instructions.

• SENTENCE – Participants were asked to enter the entire sen-
tence before requesting recognition. As with TWOWORD,
no input action was required to denote spaces.

Participants used the smartwatch keyboard described previ-
ously. All conditions used the same keyboard, recognition
setup, and text copy task. The only difference between con-
ditions was the instructions given by the experimenter and
by the app about how to enter text (Figure 2 top). We told
participants to carry on after any recognition errors with a goal
of entering the text “quickly and accurately”.

After each sentence, participants were shown the original sen-
tence, their final input, and their error and entry rate on the
sentence (Figure 2 bottom). We also showed them the number
of right swipe recognition events they requested and the target
value for the given condition and sentence. If the error rate was
above 5% CER or the number of right swipes was incorrect,
this text was shown in red and the watch vibrated twice. Af-
ter completing each condition, participants were shown their
average error and entry rate for all sentences in the condition.

Participants first completed four practice sentences in each of
the three conditions. After all practice sentences, participants
completed 12 sentences in each of the three conditions. We
only analyzed data from the non-practice tasks.

Results
Figure 3 shows boxplots of the main results. Table 1 provides
numeric results and statistical test details.

Participants became faster as the size of their input increased.
Entry rate increased from 26 wpm in WORD, to 29 wpm in
TWOWORD, to 32 wpm in SENTENCE. These differences
were all statistically significant (Table 1). Entry time included
the time it took to recognize input. The impact of recognition
time on entry rate was negligible, recognition took 0.054 s in
WORD, 0.084 s in TWOWORD, and 0.23 s in SENTENCE.

Error rate varied depending on the amount of input per recog-
nition. CER was lowest in TWOWORD at 2.7%, followed by
WORD 3.1%, and finally SENTENCE 3.9%. These differences
were not statistically significant (Table 1).

The literal CER (before any recognition) was lowest in SEN-
TENCE at 15.3%, followed by TWOWORD at 17.6%, and
finally WORD at 19.4%. Only the difference between SEN-
TENCE and WORD was statistically significant (Table 1).
These results suggest an advantage of larger input sizes is
that users may more accurately target letters when their input
is continuous and not broken by delimiting word boundaries
or checking recognition results.

The literal CER was highly variable between participants. As
expected, most participants had a high error rate on the small
keyboard. However, four participants had a low literal CER of
less than 3% (averaged over all conditions). One participant
actually correctly targeted every single letter in all conditions.

Participants could left swipe to backspace any erroneous taps.
In all conditions the number of backspaces per final output
character was low: WORD at 0.066, TWOWORD at 0.054, and
SENTENCE at 0.067. These differences were not statistically
significant (Table 1). This indicates that despite often seeing
incorrect letters in the pending input, participants tended to
trust that the auto-correct algorithm would bail them out.

Based on the condition and sentence, we calculated how often
participants input the correct amount. SENTENCE was the eas-
iest with correct behavior on 99% of tasks. WORD was next at
98% correct behavior. TWOWORD was more difficult at 94%.
Only the difference between TWOWORD and SENTENCE was
statistically significant (Table 1). The difficulty of TWOWORD
was confirmed by participants’ comments (Table 2).

After each condition, participants rated statements on a 7-
point Likert scale (1=strongly disagree, 7=strongly agree).
The mean rating for the statement “I thought I entered text
quickly” was 5.25 in WORD, 5.58 in TWOWORD, and 5.67
in SENTENCE (Figure 4 left). This difference was not statis-
tically significant (Friedman’s test, χ2(2) = 2.14, p = 0.34).
The mean rating for the statement “I thought I entered text
accurately” was 5.25 in WORD, 5.08 in TWOWORD, and 4.54
in SENTENCE (Figure 4 right). This difference was not statis-
tically significant (Friedman’s test, χ2(2) = 3.92, p = 0.14).

As shown in Table 2, participants had both positive and nega-
tive things to say about each strategy. This indicates we may
want to design input methods that provide participants flexibil-
ity in how much input they provide for each recognition.

EXPERIMENT 2: FLEXIBLE INPUT AMOUNT
After a short break, participants proceeded to Experiment
2. We explained to participants they were now free to use
whatever input strategy they liked and that they could switch
freely between them. This was a within-subject experiment
with two counterbalanced conditions:

• COPY – Participants entered memorable sentences.

• COMPOSE – Participants were asked to invent a fictitious
message that they might write on a mobile device.

0

10

20

30

40

50

60

Word Two
Word

Sentence

E
n

tr
y
 r

a
te

 (
w

p
m

)

●

●

●

●

0

5

10

15

Word Two
Word

Sentence
E

rr
o

r
ra

te
 (

C
E

R
 %

)

0

10

20

30

40

50

Word Two
Word

Sentence

L
it
e

ra
l
e

rr
o

r
ra

te
 (

C
E

R
 %

)

●

●

●

●

0.0

0.1

0.2

0.3

Word Two
Word

Sentence

B
a
c
k
s
p
a
c
e
s
 p

e
r

c
h
a
ra

c
te

r

●●●●

●

● ●●●

80

85

90

95

100

Word Two
Word

Sentence

C
o
rr

e
c
t
b
e
h
a
v
io

r
(%

)

Figure 3. Entry rate, error rate (after recognition), literal error rate (before recognition), backspaces/character, and correct behavior in Experiment 1.

Entry rate (wpm) Error rate (CER %) Literal error rate (CER %)
WORD 26.2 ± 3.6 [9.0, 48.8] 3.1 ± 1.5 [0.8, 13.2] 19.4 ± 5.9 [0.0, 47.5]
TWOWORD 28.9 ± 3.8 [12.5, 46.7] 2.7 ± 1.0 [0.0, 8.2] 17.6 ± 5.7 [0.0, 48.4]
SENTENCE 31.8 ± 4.6 [12.2, 51.7] 3.9 ± 1.2 [0.0, 12.6] 15.3 ± 4.5 [0.0, 31.0]
ANOVA F2,46 = 24.8, η2

p = 0.52, p < .001 F2,46 = 1.7, η2
p = 0.07, p = 0.199 F2,46 = 6.5, η2

p = 0.22, p < .01
Post-hoc WORD < TWOWORD, p < .001 Not applicable SENTENCE < WORD, p < .01

TWOWORD < SENTENCE, p < .01 TWOWORD ≈ SENTENCE, p = 0.177
WORD < SENTENCE, p < .001 TWOWORD ≈WORD, p = 0.361

Backspaces per character Correct behavior (%)
WORD 0.065 ± 0.054 [0.00, 0.57] 97.6 ± 1.9 [83.3, 100.0]
TWOWORD 0.054 ± 0.038 [0.00, 0.36] 93.8 ± 3.5 [66.7, 100.0]
SENTENCE 0.067 ± 0.048 [0.00, 0.49] 99.0 ± 1.2 [91.7, 100.0]
ANOVA F2,46 = 1.2, η2

p = 0.05, p = 0.309 F2,46 = 6.1, η2
p = 0.21, p < .01

Post-hoc Not applicable TWOWORD < SENTENCE, p < .05
TWOWORD ≈WORD, p = 0.055
SENTENCE ≈WORD, p = 0.770

Table 1. Results from Experiment 1. Results formatted as: mean ± 95% CI [min, max]. The bottom section of each table shows the repeated measures
ANOVA statistical test for each dependent variable. For significant omnibus tests, we show pairwise post-hoc tests (Bonferroni corrected).

WORD
+ “Less stress to spell the words correctly”
+ “Swiping right after every word felt natural”
- “Slow due to large amounts of swiping”
- “Swiping after each word slowed me down”

TWOWORD
+ “Easier than single words and full sentences”
+ “This version worked the best for me”
- “Hard to remember to type two words then swipe”
- “Swiping every two words interrupted flow”

SENTENCE
+ “Fast to type as there is less right swiping”
+ “Felt extremely fast”
- “It was hard to make sure I entered the letters

correctly when every word was mixed”
- “Harder for the watch to correct me”

Table 2. Selected positive and negative comments provided by partici-
pants about each condition in Experiment 1.

The procedure and interface was almost identical to Experi-
ment 1. We changed the task prompt screen and post-input
review screen to reflect the composition task and to indicate
they were free to choose their input amount (Figure 5). Par-
ticipants first completed four practice tasks in both conditions.
This was followed by 12 evaluation tasks in both conditions.
We only analyzed data from the non-practice tasks.

●

●● ●

Quickly
1

2

3

4

5

6

7

Word Two
Word

Sentence

L
ik

e
rt

 r
a

ti
n

g

●

Accurately
1

2

3

4

5

6

7

Word Two
Word

Sentence

L
ik

e
rt

 r
a

ti
n

g

Figure 4. Subjective ratings about whether participants felt they entered
text quickly (left) or accurately (right) in Experiment 1.

Results
Figure 6 shows boxplots of the main results. Table 3 provides
numeric results and statistical test details.

Entry rates were faster in COPY at 33.4 wpm compared to
COMPOSE at 30.0 wpm. This difference was statistically sig-
nificant (Table 3) Recognition time was 0.11 s in both condi-
tions. Participants wrote somewhat longer messages in COM-
POSE, 24.7 characters versus 20.2 in COPY.

In COMPOSE, participants created plausible and creative com-
positions. Table 4 shows some participant compositions after
recognition by the decoder. To get an approximate error rate
for COMPOSE, we used the crowdsourced judging procedure
from [33]. We outline the procedure here for completeness.

Entry rate (wpm) Backspaces per character
COPY 33.4 ± 4.8 [13.9, 63.3] 0.048 ± 0.040 [0.00, 0.37]
COMPOSE 30.0 ± 4.4 [11.9, 51.0] 0.060 ± 0.046 [0.00, 0.42]
ANOVA test F1,23 = 10.5, η2

p = 0.31, p < .01 F1,23 = 4.6, η2
p = 0.17, p < .05

Task time (seconds) Sentence input strategy (%)
COPY 14.5 ± 1.7 [9.8, 25.2] 36.5 ± 17.0 [0.0, 100.0]
COMPOSE 21.8 ± 3.4 [11.2, 40.2] 31.2 ± 17.1 [0.0, 100.0]
ANOVA test F1,23 = 24.5, η2

p = 0.52, p < .001 F1,23 = 1.6, η2
p = 0.07, p = 0.213

Table 3. Results from Experiment 2. Participants copied sentences or composed their own messages. Results formatted as: mean ± 95% CI [min, max].
The bottom section of each table shows the repeated measures ANOVA statistical test for each dependent variable.

Figure 5. Prompts before each task (top) and post-input feedback (bot-
tom) for Experiment 2: COPY (left) and COMPOSE (right).

you forgot your backpack
what do you want to do tonight
would you like to go hiking
ok good game see you tommoroww
seriously why does everyone hate pineapple on pizza
the weather kind of sus ks today

Table 4. Example text written by participants in Experiment 2 COM-
POSE. This text includes any recognition errors made by the decoder.

We had nine workers on Amazon Mechanical Turk judge
participants’ compositions (including any recognition errors).
Workers judged a set of compositions as correct, needing
correction, or completely uncorrectable. We injected a set
of easily correctable compositions, eliminating workers who
failed to judge 70% of these correctly. After eliminating work-
ers, all compositions were judged by at least six workers. For
correctable cases, workers provided their best guess of the
intended text, correcting obvious mistakes in spelling, gram-
mar, punctuation, and case. If completely correct, a worker’s
judged CER was taken to be 0%. If completely incorrect, it
was taken to be 100%. Otherwise we computed the CER ig-
noring case and punctuation other than apostrophes. We took
the median CER of all workers. This resulted in a judged CER
in COMPOSE of 2.2% ± 0.98 (95% CI). This was comparable
to the CER in COPY of 2.6% ± 1.2 (95% CI).

We wanted to check how well our crowdsourced judging pro-
cedure from [33] measured the actual error rate. We did this
by having nine workers judge each recognition result from the
COPY condition where the reference text is actually available.

●

0

10

20

30

40

50

60

Copy Compose

E
n
tr

y
 r

a
te

 (
w

p
m

)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Copy Compose

B
a
c
k
s
p
a
c
e
s
 p

e
r

c
h
a
ra

c
te

r

●

●

●

●

0

10

20

30

40

Copy Compose

T
a
s
k
 t
im

e
 (

s
)

0

20

40

60

80

100

Copy Compose

S
e
n
te

n
c
e
 i
n
p
u
t
(%

)

Figure 6. Entry rate, backspaces per character, task time, and sentence
input strategy percent in Experiment 2.

The judged CER on COPY was 1.1% ± 0.54 (95% CI) com-
pared to a CER of 2.6% ± 1.2 (95% CI) calculated using the
actual reference text. The judged CER did seem to somewhat
underestimate the CER. We conjecture this is due to work-
ers either missing recognition errors altogether or correcting
errors to similarly spelled words that may not have been the
actual target word. While judged CER provides an approxi-
mate error rate for composition tasks, we recommend caution
in interpreting its absolute magnitude.

As might be expected, participants were more tentative when
composing. Participants erased characters more often: 0.060
backspaces per character in COMPOSE versus 0.048 in COPY.
This difference was statistically significant (Table 3). Further,
it took participants longer to complete each task. Including
time spent on the prompt and post-input screens, participants
took 21.8 s per task in COMPOSE versus only 14.5 s per task in
COPY. This difference was statistically significant (Table 3).

This shows another tradeoff of a composition task. On the
plus side, user behavior was perhaps closer to real-world text
input, e.g. users changed their mind and erased previous text,
users paused mid-sentence to think about what to write, etc.
On the minus side, in a given time we can collect fewer tasks
for estimating a participant’s performance. Furthermore, a
participant’s performance may exhibit more variability due to
cognitive overheads associated with creating novel text.

●

●

●●
●

●

● ●

●

●

●● ●

●

●●

●●

●

●

Copy

1

3

5

7

9

W
o

rd
s
 p

e
r

re
c
o

g
n

it
io

n

●●
●

●●

●

●

●

●

●

● ●

●

●●

●

●

Compose

1

3

5

7

9

W
o

rd
s
 p

e
r

re
c
o

g
n

it
io

n

Figure 7. Words per recognition for each participant in COPY (top) and
COMPOSE (bottom) in Experiment 2. Participants are ordered by mean
words per recognition across both conditions. The same participant has
the same x-position in both plots. The higher the words per recognition,
the more that participant preferred multiple word or sentence input.

We measured whether participants used sentence input by
counting how often tasks had only a single recognition event.
We found sentence input was more frequent in COPY at 37%
compared to COMPOSE at 31%. This difference was not sta-
tistically significant (Table 3).

Determining precisely whether a participant was using word
or multiple-word input is more difficult. Participants may have
switched input amounts during an entry. Furthermore, the
decoder may return a different number of recognized words
compared to a participant’s intent. To provide a visualization
of input amount, we plotted the number of words per recogni-
tion event in both conditions for each participant (Figure 7).
A value of one indicates a word input strategy. As participants
wrote on average four words in COPY and five in COMPOSE,
values of four or more is indicative of sentence input. Values
such as two are indicative of a multiple word input. Based on
Figure 7, most participants seem to have adopted either a word
or sentence input approach. Further, they seem to have used a
similar approach in both conditions.

We also analyzed participants’ input behavior by calculating
the difference in words per recognition between conditions
for each participant (subtracting a participant’s COPY average
from their COMPOSE average). 13 out of 24 participants had
longer input in COMPOSE versus COPY. The magnitude of the
difference was small: 0.13 ± 0.32 (95% CI). Thus it appears
the entry task (copying text or composing novel text) did not
have a large impact on participants’ input size behavior.

We were curious if the width of a participant’s index finger
impacted performance. We split participants in two halves
according to the median finger width. Figure 8 shows the
performance of each participant in the text copy conditions of
Experiment 1 and 2. The entry rate in the text copy conditions
was 30.11 wpm ± 3.98 (95% CI) for the small finger group
versus 30.05 wpm ± 7.93 (95% CI) for the large finger group.
This difference was not statistically significant (Welsch t-test,
t16.2 =−0.02, p = 0.99, r = 0.004). The error rate in the text

Error rate (CER %)

E
n
tr

y
 r

a
te

 (
w

p
m

)

0 2 4 6 8

0
2
0

4
0

6
0

●●

●●

●●

●●

●●

●●

●●

●●

●●

●●
●●

●●

●

Smallest fingers

Largest fingers

Figure 8. Entry and error rate of participants combining their data from
Experiment 1 and COPY in Experiment 2. Vertical whiskers are one
standard deviation. Red triangles are the 12 participants with smallest
fingers, blue circles are the 12 participants with largest fingers.

●

Quickly
1

2

3

4

5

6

7

Copy Compose

L
ik

e
rt

 r
a
ti
n
g

●

Accurately
1

2

3

4

5

6

7

Copy Compose

L
ik

e
rt

 r
a
ti
n
g

Figure 9. Subjective ratings about whether participants felt they entered
text quickly (left) or accurately (right) in Experiment 2.

copy conditions was 2.49% ± 1.15 (95% CI) for the small
finger group versus 3.66%± 1.61 (95% CI) for the large finger
group. This difference was not statistically significant (Welsch
t-test, t19.9 = 1.30, p = 0.21, r = 0.28).

After each condition, participants rated statements on a 7-
point Likert scale (1=strongly disagree, 7=strongly agree).
The mean rating for the statement “I thought I entered text
quickly” was 6.04 in COPY and 5.71 in COMPOSE (Figure 9
left). This difference was statistically significant (Friedman’s
test, χ2(1) = 4.45, p < 0.05). The mean rating for the state-
ment “I thought I entered text accurately” was 5.79 in COPY
and 5.42 in COMPOSE (Figure 9 right). This difference was
not significant (Friedman’s test, χ2(1) = 0.82, p = 0.37).

Open comments in Experiment 2 mostly related to recognition
accuracy. However a number of participants commented on
the difficulty of inventing compositions: “I began to run out
of different sentences to write”, “Typing my own message, I
thought it was slower because I had to think about what to
type, it felt more accurate though”, and “My biggest downfall
in this portion was thinking of words to say”.

COMPUTATIONAL EXPERIMENTS
In this section, we conduct offline experiments using the data
from our user study. Our goal is to inform deployment deci-
sions for virtual keyboard decoders and to investigate whether
we should be encouraging users to adopt larger input amounts.

Language Model and Search Pruning
Recall we had to aggressively prune our language models
to fit within the memory constraints of a smartwatch. We
compared the performance of the language models used in our

LM Pruning N-grams Size Perplexity
Char SMALL 0.6 M 5.3 MB 3.83

LARGE 5.0 M 48.5 MB 3.31
UNPRUNED 757.8 M 7479.1 MB 3.05

Word SMALL 0.8 M 6.3 MB 206.30
LARGE 2.7 M 23.6 MB 166.34
UNPRUNED 940.7 M 9986.7 MB 125.23

Table 5. Perplexity of different character and word language models.

study (SMALL) with less aggressively pruned models (LARGE)
and with the original models before pruning (UNPRUNED).
The LARGE models are of a size feasible for use on a more
powerful mobile device (e.g. a phone) while the UNPRUNED
models would require a cloud server.

We measured each language model’s perplexity on the
mobile_nvp_nonum sentences from the Enron mobile data
set [31]. This set had 1,347 sentences containing lowercase
letters, space, and apostrophe. Perplexity measures the aver-
age number of choices for the next character or word given
the previous text. Lower perplexity is better.

As shown in Table 5, more aggressive pruning increased the
perplexity of both the character and word language models.
While decoding on-device removes the need for a network
connected device, recognition accuracy may suffer compared
to using a large language model hosted on a cloud server.

To verify these perplexity differences resulted in actual dif-
ferences in recognition accuracy, we conducted experiments
on the tap data recorded in Experiment 1. We additionally
explored the impact of having more processing power. For
these experiments, we used a 12-core 2.67 GHz server with
the decoder configured to use 12 threads.

Our decoder’s tradeoff between speed and accuracy is con-
trolled by a search beam. For each of our language models sets,
we tested three beams, the beam used in the study (NARROW)
and two wider beams (MODERATE and WIDE). MODERATE
represents a beam that is feasible on a more powerful mobile
device while WIDE would likely require a cloud server.

Table 6 shows the mean participant CER for each language
model set and beam combination on Experiment 1’s tap data.
For all the language model sets, using a MODERATE beam low-
ered error rate in all conditions. However this beam resulted in
recognition taking on average eight times longer. Increasing
to the WIDE beam did not provide any further error reduction.

The LARGE language models helped reduce recognition errors.
However using the much larger UNPRUNED models did not
provide further error reduction. In summary, the LARGE mod-
els with the MODERATE search beam was a good combination,
resulting in substantially lower error rates, in particular for the
sentence input which had its error rate cut in half. Further it
seems that word-at-a-time entry is viable with modest memory
and computation resources while multiple-word or sentence
input is best done if more substantial resources are available.

Automatic Apostrophes
Participants frequently commented we failed to automatically
insert apostrophes for input such as “im”. Inserting omitted

●

●
●

● ● ●

0.0

0.5

1.0

1.5

2.0

2.5

1 2 3 4 5 6

Words per recognition

E
rr

o
r

ra
te

 (
C

E
R

 %
)

Spaces

● Certain

Inferred

Figure 10. Error rate with increasing words per recognition. Spaces be-
tween words were either certain or needed to be inferred by the decoder.

apostrophes is a common feature on commercial keyboards
which often lack an apostrophe on the main keyboard. While
our decoder can insert all valid characters during its search, it
may have failed to find these probable apostrophe insertions
due to our narrow search beam. We implemented a feature to
allow apostrophes to be inserted with a separate penalty.

We randomly selected eight participants, tuning the apostrophe
penalty on their data from Experiment 1 (all conditions) and
Experiment 2 (COPY condition), 384 sentences. We tested
the enhanced decoder on the remaining 16 participants, 768
sentences. Using the same language models and beam as
the watch, the apostrophe insertion feature lowered error rate
on from 2.85% to 2.49% CER. However, the more liberal
insertion of apostrophes increased decoding time by 23%.

Input Amount
An interesting question is whether providing more than one
word improves recognition accuracy. Providing more words
should allow the recognizer to make a more accurate guess
since it can jointly infer a sequence of words. We tested this on
375 copy tasks from Experiment 1 and 2 in which participants
exhibited a word-at-a-time input approach. We varied the
number of words of tap data the recognizer was given before
performing a decode. We also varied whether the decoder
inserted a certain space character between words of tap data or
if the taps were simply concatenated together. The earlier case
simulates a user providing an input event that unambiguously
delimits words (e.g. a right swipe). The later case simulates a
user who relies on the decoder to insert all spaces. We used
the LARGE language models and the MODERATE beam.

As shown in Figure 10, if spaces were known with certainty,
error rate was reduced from 2.3% to 1.8%. This shows that the
decoder could leverage the larger input sizes to make better
guesses. However, if the spaces had to be inferred, the error
rate stayed relatively constant at 2.3%. It seems the advantage
of providing additional information during the decode was
canceled out by the difficulty of guessing word boundaries.

The current design of multiple word input by many keyboards
involves spaceless entry since the space key is used to trigger
recognition. Our results suggest this may be suboptimal. By
having separate input actions for indicating space and request-
ing recognition, recognition errors can be reduced. However
this could slow input due to the additional space actions. Fur-
ther work is needed to ascertain whether a design based on two
input actions would yield improved end-user performance.

Language model Search beam Error rate (CER %) Recognition time
WORD TWOWORD SENTENCE Average (ms)

SMALL NARROW 3.09 2.57 3.94 3.20 3.2
MODERATE 2.96 2.38 2.31 2.55 25.8
WIDE 2.96 2.39 2.31 2.55 301.3

LARGE NARROW 2.91 2.86 2.80 2.86 3.5
MODERATE 2.78 2.49 2.04 2.44 25.4
WIDE 2.78 2.49 2.01 2.43 273.3

UNPRUNED NARROW 2.85 2.35 2.89 2.70 4.6
MODERATE 2.76 2.30 2.24 2.43 29.9
WIDE 2.76 2.22 2.10 2.36 482.7

Table 6. Error rates and recognition time on data from Experiment 1 varying the language model size and search beam. Results on a 12-core 2.67 GHz
server. Recognition time is the average over all three conditions. The first row is the smartwatch configuration used in the user study.

DISCUSSION
As expected, requiring fewer motor actions resulted in in-
creased entry speed. Even in the challenging environment
of input on a tiny touchscreen device with severe resource
constraints, we found we could accurately recognize mobile
messages with error rates below 4%. We found users eas-
ily adopted various input size strategies. When allowed to
choose their own input size strategy, users were split between
conventional word-at-a-time approach and longer phrase- or
sentence-at-a-time strategies. We found this was true both
when they were copying provided sentences and when they
composed their own sentences.

While we have shown it is possible to increase input speeds
and lower recognition error rates via larger input amounts, this
does not necessarily mean a user’s effective entry and error
rates are guaranteed to improve. Recognition errors may occur
and need correction. A key challenge is how to design error
correction interfaces that encourage users to “go big” with
the confidence that any recognition errors can be corrected
quickly and easily. If correction interfaces are not well done,
any gains from providing larger amounts of input can easily
be lost in time consuming and frustrating correction episodes.

Our keyboard required interface actions to trigger recognition,
delete taps, or move to the next task. Adding buttons big
enough to be reliably hit would have required a large amount
of screen space. Instead, we opted to use swipe gestures.
On the plus side, most users easily learned to use our swipe
gestures. On the minus side, some users felt swiping was slow
compared to tapping. Indeed, right swipes were almost twice
as long as discrete taps in Experiment 1 (112 ms versus 68 ms).
It would be interesting to explore other options, e.g. using
the text result area as a big button or mapping multi-finger
taps to actions. Designing a small set of highly reliable input
actions is an important consideration for interfaces that rely on
uncertain input as they provide anchor points where the user
and system can synchronize after a misunderstanding.

We found error rates were low even when using highly pruned
language models. However, the Enron memorable sentences
tend to be rather easy to predict English. It would be interest-
ing to see if larger language models are required for accurate
recognition of more diverse text, e.g. text with uncommon
words, niche topics, or text about current events.

Our results confirm that the theoretical motor time reduction
afforded by larger input amounts does indeed result in faster
entry rates. However, whether larger input amounts reduce
error rates is unclear. While in our study the error rate after
recognition was higher for sentence input, post-hoc experi-
ments revealed this was due to over-pruning in the decoder’s
search. With sufficient computation, it would be possible to
achieve a lower error rate for sentence input. Moreover, while
we originally thought the advantage of larger input would
come from providing more information at one time to the
decoder, our experiments showed that accuracy was constant
across different input amounts if spaces had to be inferred.

Overall, sentence-based input does not appear to necessarily
reduce error rate from a decoding-perspective. One possible
explanation is that the additional error rate reduction due to
additional information about the user’s intention is to some
extent canceled out by the lack of any user input that specifies
spaces. However, it should be emphasized that keyboards
could allow users to signal spaces in some way. Moreover,
we found that users tended to be more precise as their input
amount increases, possibly due to the less context switching.
While we have shown larger input amounts increase entry
rates, it remains to be seen whether lower errors rates can also
be provided in practice for virtual keyboard input.

CONCLUSIONS
We explored how to improve text entry speed and recognition
accuracy when using a virtual keyboard decoder. We focused
on allowing users to change the quantity of observations pro-
vided to the decoder for each recognition event.

Compared to a word-at-a-time input strategy, providing input
of an entire sentence significantly improved entry rates from
26 wpm to 32 wpm. This was done while keeping the character
error rate below 4%. In offline recognition experiments, we
found that with more processing power and memory, sentence
input could be recognized with a 2.0% error rate while word-
at-a-time input had a higher 2.8% error rate.

Our results suggest recognition-based touchscreen input meth-
ods can be designed to enhance performance by allowing users
to modulate the amount of input per recognition event.

Acknowledgements
This work was supported by Google Faculty awards (K.V. and
P.O.K.), and EPSRC EP/N010558/1, EP/N014278/1 (P.O.K.).

REFERENCES
1. Arif, A. S., and Mazalek, A. A survey of text entry

techniques for smartwatches. In Proceedings, Part II, of
the 18th International Conference on Human-Computer
Interaction. Interaction Platforms and Techniques -
Volume 9732, Springer-Verlag New York, Inc. (New York,
NY, USA, 2016), 255–267.

2. Bi, X., Ouyang, T., and Zhai, S. Both complete and
correct?: Multi-objective optimization of touchscreen
keyboard. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI ’14, ACM
(New York, NY, USA, 2014), 2297–2306.

3. Bi, X., Smith, B. A., and Zhai, S. Quasi-qwerty soft
keyboard optimization. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
ACM (2010), 283–286.

4. Bi, X., Smith, B. A., and Zhai, S. Multilingual
touchscreen keyboard design and optimization.
Human–Computer Interaction 27, 4 (2012), 352–382.

5. Chelba, C., Brants, T., Neveitt, W., and Xu, P. Study on
interaction between entropy pruning and kneser-ney
smoothing. In Proceedings of Interspeech (2010),
2242–2245.

6. Garay-Vitoria, N., and Abascal, J. Text prediction
systems: a survey. Universal Access in the Information
Society 4, 3 (2006), 188–203.

7. Goodman, J., Venolia, G., Steury, K., and Parker, C.
Language modeling for soft keyboards. In Eighteenth
National Conference on Artificial Intelligence, AAAI ’02,
American Association for Artificial Intelligence (Menlo
Park, CA, USA, 2002), 419–424.

8. Gordon, M., Ouyang, T., and Zhai, S. Watchwriter: Tap
and gesture typing on a smartwatch miniature keyboard
with statistical decoding. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in
Computing Systems, CHI ’16, ACM (New York, NY,
USA, 2016), 3817–3821.

9. Jurafsky, D., and Martin, J. H. Speech and language
processing. Pearson London, 2000.

10. Kristensson, P. O. Discrete and Continuous Shape
Writing for Text Entry and Control. PhD thesis,
Linköping University, 2007.

11. Kristensson, P. O. Five challenges for intelligent text
entry methods. AI Magazine 30, 4 (2009), 85–94.

12. Kristensson, P. O. Next-generation text entry. Computer
48, 7 (2015), 84–87.

13. Kristensson, P. O., and Vertanen, K. Performance
comparisons of phrase sets and presentation styles for
text entry evaluations. In Proceedings of the 2012 ACM
International Conference on Intelligent User Interfaces,
IUI ’12, ACM (New York, NY, USA, 2012), 29–32.

14. Kristensson, P. O., and Vertanen, K. The inviscid text
entry rate and its application as a grand goal for mobile

text entry. In Proceedings of the 16th International
Conference on Human-computer Interaction with Mobile
Devices and Services, MobileHCI ’14, ACM (New York,
NY, USA, 2014), 335–338.

15. Kristensson, P.-O., and Zhai, S. Shark2: A large
vocabulary shorthand writing system for pen-based
computers. In Proceedings of the 17th Annual ACM
Symposium on User Interface Software and Technology,
UIST ’04, ACM (New York, NY, USA, 2004), 43–52.

16. Kristensson, P. O., and Zhai, S. Relaxing stylus typing
precision by geometric pattern matching. In IUI ’05:
Proceedings of the 10th International Conference on
Intelligent User Interfaces, ACM Press (2005), 151–158.

17. Leiva, L. A., Sahami, A., Catala, A., Henze, N., and
Schmidt, A. Text entry on tiny qwerty soft keyboards. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, CHI ’15, ACM
(New York, NY, USA, 2015), 669–678.

18. MacKenzie, I. S., and Soukoreff, R. W. Text entry for
mobile computing: Models and methods, theory and
practice. Human–Computer Interaction 17, 2-3 (2002),
147–198.

19. MacKenzie, I. S., and Soukoreff, R. W. Phrase sets for
evaluating text entry techniques. In CHI ’03 Extended
Abstracts on Human Factors in Computing Systems, CHI
EA ’03, ACM (New York, NY, USA, 2003), 754–755.

20. MacKenzie, I. S., and Tanaka-Ishii, K. Text Entry Systems.
Morgan Kauffman, 2007.

21. MacKenzie, I. S., and Zhang, S. X. The design and
evaluation of a high-performance soft keyboard. In CHI

’99: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM Press (New York,
NY, USA, 1999), 25–31.

22. Oulasvirta, A., Reichel, A., Li, W., Zhang, Y.,
Bachynskyi, M., Vertanen, K., and Kristensson, P. O.
Improving two-thumb text entry on touchscreen devices.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ACM (2013), 2765–2774.

23. Rabiner, L., and Juang, B.-H. Fundamentals of Speech
Recognition. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1993.

24. Rick, J. Performance optimizations of virtual keyboards
for stroke-based text entry on a touch-based tabletop. In
Proceedings of the 23nd annual ACM symposium on User
interface software and technology, ACM (2010), 77–86.

25. Smith, B. A., Bi, X., and Zhai, S. Optimizing touchscreen
keyboards for gesture typing. In Proceedings of the 33rd
Annual ACM Conference on Human Factors in
Computing Systems, ACM (2015), 3365–3374.

26. Stolcke, A. Entropy-based pruning of backoff language
models. In Proceedings of DARPA Broadcast News
Transcription and Understanding Workshop (1998),
270–274.

27. Turner, C. J., Chaparro, B. S., and He, J. Text input on a
smartwatch qwerty keyboard: Tap vs. trace. International
Journal of Human-Computer Interaction 33, 2 (2017),
143–150.

28. Vertanen, K., and Kristensson, P. O. Automatic selection
of recognition errors by respeaking the intended text. In
ASRU ’09: IEEE Workshop on Automatic Speech
Recognition and Understanding (December 2009),
130–135.

29. Vertanen, K., and Kristensson, P. O. Parakeet: A
continuous speech recognition system for mobile
touch-screen devices. In Proceedings of the 14th
International Conference on Intelligent User Interfaces,
IUI ’09, ACM (New York, NY, USA, 2009), 237–246.

30. Vertanen, K., and Kristensson, P. O. Getting it right the
second time: Recognition of spoken corrections. In SLT

’10: Proceedings of the 3rd IEEE Workshop on Spoken
Language Technology (December 2010), 277–282.

31. Vertanen, K., and Kristensson, P. O. A versatile dataset
for text entry evaluations based on genuine mobile emails.
In Proceedings of the 13th International Conference on
Human Computer Interaction with Mobile Devices and
Services, MobileHCI ’11, ACM (New York, NY, USA,
2011), 295–298.

32. Vertanen, K., and Kristensson, P. O. Complementing text
entry evaluations with a composition task. ACM
Transactions on Computer-Human Interaction 21, 2
(2014), 8:1–8:33.

33. Vertanen, K., and Kristensson, P. O. Complementing text
entry evaluations with a composition task. ACM
Transactions on Computer-Human Interactions 21, 2
(Feb. 2014), 8:1–8:33.

34. Vertanen, K., Memmi, H., Emge, J., Reyal, S., and
Kristensson, P. O. VelociTap: Investigating fast mobile
text entry using sentence-based decoding of touchscreen
keyboard input. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems,
CHI ’15, ACM (New York, NY, USA, 2015), 659–668.

35. Weir, D., Pohl, H., Rogers, S., Vertanen, K., and
Kristensson, P. O. Uncertain text entry on mobile devices.
In Proceedings of the 32nd Annual ACM Conference on
Human Factors in Computing Systems, CHI ’14, ACM
(New York, NY, USA, 2014), 2307–2316.

36. Yi, X., Yu, C., Shi, W., Bi, X., and Shi, Y. Word clarity as
a metric in sampling keyboard test sets. In Proceedings of
the 2017 CHI Conference on Human Factors in
Computing Systems, CHI ’17, ACM (New York, NY,
USA, 2017), 4216–4228.

37. Yi, X., Yu, C., Shi, W., and Shi, Y. Is it too small?:
Investigating the performances and preferences of users
when typing on tiny qwerty keyboards. International
Journal of Human-Computer Studies 106, Supplement C
(2017), 44–62.

38. Young, S. J., Russell, N., and Thornton, J. Token passing:
A simple conceptual model for connected speech
recognition systems. Tech. rep., Cambridge University
Engineering Department, 1989.

39. Zhai, S., Hunter, M., and Smith, B. A. The metropolis
keyboard-an exploration of quantitative techniques for
virtual keyboard design. In Proceedings of the 13th
annual ACM symposium on User interface software and
technology, ACM (2000), 119–128.

40. Zhai, S., Hunter, M., and Smith, B. A. Performance
optimization of virtual keyboards. Human–Computer
Interaction 17, 2-3 (2002), 229–269.

41. Zhai, S., and Kristensson, P.-O. Shorthand writing on
stylus keyboard. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
CHI ’03, ACM (New York, NY, USA, 2003), 97–104.

42. Zhai, S., and Kristensson, P. O. Interlaced qwerty:
accommodating ease of visual search and input flexibility
in shape writing. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
ACM (2008), 593–596.

43. Zhai, S., and Kristensson, P. O. The word-gesture
keyboard: Reimagining keyboard interaction.
Communications of the ACM 55, 9 (2012), 91–101.

44. Zhai, S., Kristensson, P.-O., and Smith, B. A. In search of
effective text input interfaces for off the desktop
computing. Interacting with computers 17, 3 (2004),
229–250.

45. Zhai, S., Sue, A., and Accot, J. Movement model, hits
distribution and learning in virtual keyboarding. In
Proceedings of the SIGCHI conference on Human factors
in computing systems, ACM (2002), 17–24.

	Introduction
	Related Work
	Decoding
	Smartwatch Text Entry
	Text Entry Evaluation

	System
	Noisy Tap Recognizer
	Smartwatch Keyboard

	User Study: Input Amount
	Correction Features
	Participants, Metrics, and Study Tasks

	Experiment 1: Fixed Input Amount
	Results

	Experiment 2: Flexible Input Amount
	Results

	Computational Experiments
	Language Model and Search Pruning
	Automatic Apostrophes
	Input Amount

	Discussion
	Conclusions
	Acknowledgements

	REFERENCES

