
Name: Dhritabrata Mitra

Project: Code Critique

App Description:

Code Critiquer is a static analysis tool designed to identify prevalent anti-patterns in code

snippets submitted by users. Similar to grammar or plagiarism checkers, users can submit either

their entire source code or specific error-ridden segments. The application provides feedback

regarding the detected anti-patterns, such as bugs and errors, within the provided code.

Currently, Code Critiquer is tailored for Java code analysis, and there are plans to implement

MatLab support if time allows.

Stakeholder Analysis:

Onion Model

Consultants

Developers

Programming Tutors

Language Learners

Novice Programmers

Stakeholder Description:

Consultants: Conduct a UI assessment and perform usability testing on the application.

Simultaneously, consistently offer feedback to app developers throughout the app development

process.

Developers: Developers will have the main responsibility of developing the app on the basis of

consultants feedback.

Programming Tutors: Individuals aiming to clean or optimize their code can gain advantages by

addressing prevalent anti-patterns or incorporating efficient programming patterns.

Language Learners: Users learning new or unfamiliar programming language or environments

may encounter problem caused by common anti-patterns. They can take advantage of the app

to learn the language faster.

Novice Programmers: Programmers who are new to programming can use this app to find their

drawbacks and learn programming.

Stakeholders’ Goal-influence Table:

Stakeholder Goals Contributing
Influences

Consultants Work with developer
to create an ideal

application.

Offering constructive feedback during testing to
guide developers and lead the team in the correct

direction.

Devlopers Work with
consultants to create
an ideal application.

Based on the feedback from consultants, design and
write code for the project.

Programming Tutors Use the app as a tool
for teaching

Provide feedback on how to improve the app

Language Learners Use the app as a tool
to learn a new

programing language

Provide feedback on how to improve the app

Novice Programmers Use the app as a tool
to learn programing

Provide feedback on how to improve the app

Personas for the Primary stakeholder:

Persona 1:

Holland

Age: 18

Height: 5′ 7″

Weight: 133 lbs

Right-handed

Holland is a freshman at a community college in Michigan. He enrolled in computer science as a

major but has basic programming experience. He can use the app to improve programming

skills as he will learn the proper techniques for coding.

Persona 2:

Sayantan

Age: 23

Height: 5′ 8″

Weight: 147 lb

Left-handed

Sayantan is a recent graduate. He has a background as an Environment Engineer. He wants to learn

coding as he is interested in knowing how an app works. He can use this app to help him become aware

of where he needs to improve his knowledge.

Personas for the Secondary Stakeholder:

Mrinal

Age: 25

Height: 5′ 7″

Weight: 139 lb

Right-handed

Mrinal is a high school teacher who teaches programming. He can use the app to check the

solutions submitted by the students or check his solution before showing it to his students.

Forest

Age: 30

Height: 5′ 9″

Weight: 160 lb

Right-handed

Forest is a biology professor at Michigan Technological University. He is interested in programming and

wants to learn more about it. He can use the app to find the drawbacks he has in his concepts and use it

to improve on them.

Hierarchical Task Analysis

1. Access the application through the browser and log in to the application using their account or

by guest account.

2. Students can paste their code in a text box or upload the file containing their code to the

website.

3. Possible bugs at line numbers will be shown which the users can use to fix their issues.

4. Users can store their previously submitted code along with the critiques they got if they want to

look at it again in the future.

5. Users can download their output files in .txt, .pdf, and .java formats.

Appendix

Interview 1 Notes

1. Please provide details about your app idea, including an app overview and the languages/frameworks

used.

a. Code patterns are sought after in the source code.

b. Coding utilizes structures known as patterns.

c. The scientist (Ureel) focuses on identifying anti-patterns.

d. Anti-patterns encompass either bug issues or unintended solutions with unforeseen

consequences.

 Example: A viable solution with a security issue oversight

2. What language is preferred for the app?

a. Java

b. Groovy

c. Grail

3. Why is a code critique app necessary, and how would it be beneficial?

a. Especially useful for novices, such as those in classes CS1122 and CS1121.

b. Identifies problems that may be overlooked.

c. Offers solutions to problems that users may not know how to solve.

d. Enhances coding skills.

e. Allows users to review code, provide feedback, and make improvements.

4. Who are the users?

a. Novice programmers

b. Individuals with limited programming background

c. Those seeking to improve their programming skills.

d. People who make mistakes that experts may not anticipate.

5. How would users utilize the app?

a. Upload source code through a designated field.

b. Click the submit button.

c. The program will analyze the uploaded files and provide a critique output.

6. What data should the app display?

a. The user receives the uploaded code along with the provided critique.

7. How should the data be stored?

a. Utilize Grail with a model-view system; information can be stored in a database or outputted.

b. Pages can be stored in a document.

8. Is there a specific way the data should be presented?

a. The presentation format is left to our discretion.

9. How should the UI (User interface) be implemented?

a. Design the UI per class principles.

10. When and where is the app used?

a. Courses and engineering fundamentals

b. Examples include MATLAB, Python, and Java.

11. What information is presented to the user?

a. The user views the submitted program and the accompanying feedback.

12. Do you have any documents or data before starting the project?

a. Code and database files.

b. Grail and Groovy domain classes (e.g., user.find(userid)).

c. Domain files specifying data storage.

d. Modifiable domain files.

e. Descriptions of MYSQL data tables.

13. Are there previous versions we can reference?

No, Ureel provided guidance.

a. Start small and iteratively improve.

b. Create our framework.

14. What devices or interactions are envisioned for the app?

a. The app should be accessible through a web browser.

Interview 2 Notes

Parsing

We anticipate utilizing a pre-built parser as recommended by Ureel, and there is a possibility that they

will furnish one for us. The parser should possess the capability to handle both Java and MATLAB, but for

our specific scenario, the emphasis should be solely on Java.

Storage

Data is to be retained in the current database, with the option of client-side storage also considered

acceptable.

Authentication

In the event of non-client side storage, a comprehensive user authentication process is not required if

users are supplied with a unique link for each submission.

Held Time

Stored code and critiques should persist for a minimum of one semester before potential deletion, with

an extended duration of up to three semesters to enable users to track their progress across multiple

courses.

User Tracking

Users are to receive a score for their code(s), determined by factors such as the quantity of critiques,

critique removal rates, and the time between submissions. The scoring may also take into account the

severity of identified anti-patterns, including passes, failures, comments, errors, and warnings.

Critique Display

Critiques can be showcased in the form of an HTML page and/or a PDF document.

