
J: Knight’s Tour
Green

Knights on a chessboard have very interesting ways to move. They jump (ignoring the contents of squares
being jumped) from one square to a new square that is at the opposite corner of a 2 by 3 grid of squares
stretching in any direction. Studying their possible movements is a popular passtime of puzzle solvers. This
exercise solves one of these puzzles.

Imagine a grid bounded by a simple rectilinear polygon. On this grid is placed a knight. The knight needs
to reach a princess who is also on the grid. It is essential to reach the princess in the fewest possible jumps.
Each jump must keep the knight on the grid, though he may jump over intervening edges if there is some
contiguous path on the 2 by 3 grid that defines the jump (as described above). Practically speaking, this
means that the middle two squares of the grid, as well as the starting point and ending point of the proposed
jump, are inside the polygon. Your task is to help the knight by telling him what the minimum number
of jumps is. While it would be polite to report the details of the path, that is beyond the scope of your
responsibility.

Input

Input may consist of multiple cases. Each case begins with a line containing the number of rows and columns
of the playing board. Neither of these will be more than 100. The details of the board are shown in the next
lines, one line per row. The row is represented as a string whose characters indicate if the corresponding grid
positions are outside the bounding polygon (X), inside the bounding polygon (O), the position of the knight
(K), and the position of the princess (P ). The knight and princess will both be inside the bounding polygon.
The last case is followed by a line containing two 0’s. Arbitrary white space may be used as delimiters.

Output

For each case, display the case number followed by the fewest possible jumps, formatted as in the sample.
If it is not possible to reach the princess, say “impossible” as shown below. Use single spaces as delimiters.

Sample Input

1 6

XKOOPX

2 5

KOXOP

XOOOX

2 5

KOXOP

XXOOX

0 0

Sample Output

Case 1: impossible

Case 2: 2

Case 3: impossible


