Chapter 13
Recursion
Recursion

• A function that "calls itself"
 – In function definition, call to same function

• Divide and Conquer
 – Basic design technique
 – Break large task into subtasks

• Use recursion when subtasks are smaller versions of the original task
Recursive Function Example

- Consider task:
- Search list for a value
 - Subtask 1: search 1st half of list
 - Subtask 2: search 2nd half of list
- Subtasks are smaller versions of original task!
- When this occurs, recursive function can be used.
 - Usually results in a more "elegant" solution
Recursion Example: Powers

- Function power():

  ```
  result = power(2,3);
  ```

 - Returns 2 raised to power 3

- Can we use recursion for this problem?

 - Can it be divided into subtasks which are smaller versions of the original task?
Function Definition for power()

- int power(int x, int n) {
 if (n < 0) {
 cout << "Illegal argument";
 exit(1);
 }
 if (n == 1)
 return 1;
 return (x * power(x, n-1));
}
Calling Function power()

• Example:
 power(2,3);
 → power(2,2)*2
 → power(2,1)*2
 → power(2,0)*2
 → 1

 – Reaches base case
 – Recursion stops
 – Values "returned back" up stack
Tracing Function power()

Display 13.4 Evaluating the Recursive Function Call power(2, 3)

Sequence of recursive calls:

1. power(2, 0) * 2
2. power(2, 1) * 2
3. power(2, 2) * 2
4. power(2, 3)

How the final value is computed:

1. 1
2. 1 * 2 is 2
3. 2 * 2 is 4
4. 4 * 2 is 8
5. power(2, 3) is 8

Start Here
Recursion—A Closer Look

• Computer tracks recursive calls
 – Stops current function
 – Must know results of new recursive call before proceeding
 – Saves all information needed for current call
 • To be used later
 – Proceeds with evaluation of new recursive call
 – When THAT call is complete, returns to "outer" computation
Recursion Big Picture

• Outline of successful recursive function:
 – One or more cases where function accomplishes it’s task by:
 • Making one or more recursive calls to solve smaller versions of original task
 • Called "recursive case(s)"
 – One or more cases where function accomplishes it’s task without recursive calls
 • Called "base case(s)" or stopping case(s)
Infinite Recursion

- Base case MUST eventually be entered
- If it doesn’t → infinite recursion
 - Recursive calls never end!

```c++
int power(int x, int n) {
    return (x * power(x, n-1));

    if (n < 0) {
        cout << "Illegal argument";
        exit(1);
    }
    if (n == 1)
        return 1;
}
```
Stacks for Recursion

• A stack
 – Specialized memory structure
 – Like stack of paper
 • Place new on top
 • Remove when needed from top
 – Called "last-in/first-out" memory structure

• Recursion uses stacks
 – Each recursive call placed on stack
 – When one completes, last call is removed from stack
Stack Overflow

• Size of stack limited
 – Memory is finite
• Long chain of recursive calls continually adds to stack
 – All are added before base case causes removals
• If stack attempts to grow beyond limit:
 – Stack overflow error
• Infinite recursion always causes this
Recursion Vs Iteration

• Any task accomplished with recursion can also be done without it
 – Nonrecursive: called iterative, using loops

• Recursive:
 – Runs slower, uses more storage
 – Elegant solution; less coding
Thinking Recursively

• Ignore details
 – Forget how stack works
 – Forget the suspended computations
 – Yes, this is an "abstraction" principle!
 – And encapsulation principle!

• Let computer do "bookkeeping"
 – Programmer just think "big picture"
Recursive Design Techniques

• Don’t trace entire recursive sequence!
• Just check 3 properties:
 1. No infinite recursion
 2. Stopping cases return correct values
 3. Recursive cases return correct values
Recursive Design Check: power()

- Check power() against 3 properties:
 1. No infinite recursion:
 - 2nd argument decreases by 1 each call
 - Eventually must get to base case of 1
 2. Stopping case returns correct value:
 - power(x,0) is base case
 - Returns 1, which is correct for \(x^0 \)
 3. Recursive calls correct:
 - For \(n>1 \), power(x,\(n \)) returns \(\text{power}(x,\(n-1 \)) \times x \)
 - From math, we know this is correct