Recursion

- A function that "calls itself"
 - In function definition, call to same function
- Divide and Conquer
 - Basic design technique
 - Break large task into subtasks
- Subtasks could be smaller versions of the original task!
 - When they are task recursion
Recursive Function Example

• Consider task:
• Search list for a value
 – Subtask 1: search 1st half of list
 – Subtask 2: search 2nd half of list
• Subtasks are smaller versions of original task!
• When this occurs, recursive function can be used.
 – Usually results in "elegant" solution

Recursion Example: Powers

• Recall predefined function pow():
 result = pow(2.0, 3);
 – Returns 2 raised to power 3
• Can we use recursion for this problem?
 – Can it be divided into subtasks which are smaller versions of the original task?
Function Definition for power()

- int power(int x, int n) {
 if (n < 0) {
 cout << "Illegal argument";
 exit(1);
 }
 if (n == 1)
 return 1;
 return (x * power(x, n-1));
}

Calling Function power()

- Example calls:
 - power(2, 0);
 \(\rightarrow \) returns 1
 - power(2, 1);
 \(\rightarrow \) returns \((power(2, 0) \times 2) \);
 \(\rightarrow \) returns 1
 – Value 1 multiplied by 2 & returned to original call
Calling Function power()

- Larger example:
 power(2,3);
 \[\Rightarrow power(2,2) \times 2 \]
 \[\Rightarrow power(2,1) \times 2 \]
 \[\Rightarrow power(2,0) \times 2 \]
 \[\Rightarrow 1 \]
 - Reaches base case
 - Recursion stops
 - Values "returned back" up stack

Tracing Function power():

Display 13.4 Evaluating the Recursive Function Call power(2,3)

<table>
<thead>
<tr>
<th>Sequence of Recursive Calls</th>
<th>How the Final Value is Computed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\text{power}(2,0) \times 2)</td>
<td>(1 \times 2 = 2)</td>
</tr>
<tr>
<td>(\text{power}(2,1) \times 2)</td>
<td>(2 \times 2 = 4)</td>
</tr>
<tr>
<td>(\text{power}(2,2) \times 2)</td>
<td>(4 \times 2 = 8)</td>
</tr>
</tbody>
</table>

Start Here

power(2, 3) is 8
Recursion—A Closer Look

• Computer tracks recursive calls
 – Stops current function
 – Must know results of new recursive call before proceeding
 – Saves all information needed for current call
 • To be used later
 – Proceeds with evaluation of new recursive call
 – When THAT call is complete, returns to "outer" computation

Recursion Big Picture

• Outline of successful recursive function:
 – One or more cases where function accomplishes it’s task by:
 • Making one or more recursive calls to solve smaller versions of original task
 • Called "recursive case(s)"
 – One or more cases where function accomplishes it’s task without recursive calls
 • Called "base case(s)" or stopping case(s)
Infinite Recursion

• Base case MUST eventually be entered
• If it doesn’t → infinite recursion
 – Recursive calls never end!

Alternate Function Definition

• int power(int x, int n) {
 return (x * power(x, n-1));

 if (n < 0) {
 cout << "Illegal argument";
 exit(1);
 }
 if (n == 1)
 return 1;
}
Stacks for Recursion

- A stack
 - Specialized memory structure
 - Like stack of paper
 - Place new on top
 - Remove when needed from top
 - Called "last-in/first-out" memory structure
- Recursion uses stacks
 - Each recursive call placed on stack
 - When one completes, last call is removed from stack

Stack Overflow

- Size of stack limited
 - Memory is finite
- Long chain of recursive calls continually adds to stack
 - All are added before base case causes removals
- If stack attempts to grow beyond limit:
 - Stack overflow error
- Infinite recursion always causes this
Recursion Versus Iteration

• Recursion not always "necessary"
• Not even allowed in some languages
• Any task accomplished with recursion can also be done without it
 – Nonrecursive: called iterative, using loops
• Recursive:
 – Runs slower, uses more storage
 – Elegant solution; less coding

Thinking Recursively

• Ignore details
 – Forget how stack works
 – Forget the suspended computations
 – Yes, this is an "abstraction" principle!
 – And encapsulation principle!
• Let computer do "bookkeeping"
 – Programmer just think "big picture"
Thinking Recursively: power

- Consider power() again
- Recursive definition of power:
 \[\text{power}(x, n) \]
 returns:
 \[\text{power}(x, n - 1) \times x \]
 - Just ensure "formula" correct
 - And ensure base case will be met

Recursive Design Techniques

- Don’t trace entire recursive sequence!
- Just check 3 properties:
 1. No infinite recursion
 2. Stopping cases return correct values
 3. Recursive cases return correct values
Recursive Design Check: power()

- Check power() against 3 properties:
 1. No infinite recursion:
 - 2\text{nd} argument decreases by 1 each call
 - Eventually must get to base case of 1
 2. Stopping case returns correct value:
 - power(x,0) is base case
 - Returns 1, which is correct for x^0
 3. Recursive calls correct:
 - For n>1, power(x,n) returns power(x,n-1)*x
 - Plug in values \rightarrow correct