Recursive Function Example

- Consider task:
 - Search list for a value
 - Subtask 1: search 1st half of list
 - Subtask 2: search 2nd half of list
- Subtasks are smaller versions of original task!
- When this occurs, recursive function can be used.
 - Usually results in "elegant" solution

Recursion Example: Powers

- Recall predefined function pow():
 - result = pow(2.0, 3);
 - Returns 2 raised to power 3
- Can we use recursion for this problem?
 - Can it be divided into subtasks which are smaller versions of the original task?

Recursion

- A function that "calls itself"
 - In function definition, call to same function
- Divide and Conquer
 - Basic design technique
 - Break large task into subtasks
- Subtasks could be smaller versions of the original task!
 - When they are → recursion
Calling Function `power()`

- Larger example:
  ```
  power(2, 3);
  \rightarrow power(2, 2) \cdot 2
  \rightarrow power(2, 1) \cdot 2
  \rightarrow power(2, 0) \cdot 2
  \rightarrow 1
  ```
 - Reaches base case
 - Recursion stops
 - Values "returned back" up stack

Function Definition for `power()`

```cpp
int power(int x, int n) {
    if (n < 0) {
        cout << "Illegal argument";
        exit(1);
    }
    if (n == 1)
        return 1;
    return (x * power(x, n-1));
}
```

Tracing Function `power()`:
Display 13.4 Evaluating the Recursive Function Call `power(2, 3)`

- Example calls:
 - `power(2, 0)`;
 - returns 1
 - `power(2, 1)`;
 - returns (power(2, 0) * 2);
 - returns 1
 - Value 1 multiplied by 2 & returned to original call
Infinite Recursion

- Base case MUST eventually be entered
- If it doesn’t → infinite recursion
 - Recursive calls never end!

Alternate Function Definition

```cpp
int power(int x, int n) {
    return (x * power(x, n-1));
    if (n < 0) {
        cout << "Illegal argument";
        exit(1);
    }
    if (n == 1)
        return 1;
}
```

Recursion—A Closer Look

- Computer tracks recursive calls
 - Stops current function
 - Must know results of new recursive call before proceeding
 - Saves all information needed for current call
 - To be used later
 - Proceeds with evaluation of new recursive call
 - When THAT call is complete, returns to "outer" computation

Recursion Big Picture

- Outline of successful recursive function:
 - One or more cases where function accomplishes it’s task by:
 - Making one or more recursive calls to solve smaller versions of original task
 - Called "recursive case(s)"
 - One or more cases where function accomplishes it’s task without recursive calls
 - Called "base case(s)" or stopping case(s)
Recursion Versus Iteration

- Recursion not always "necessary"
- Not even allowed in some languages
- Any task accomplished with recursion can also be done without it
 - Nonrecursive: called iterative, using loops
- Recursive:
 - Runs slower, uses more storage
 - Elegant solution; less coding

Stacks for Recursion

- A stack
 - Specialized memory structure
 - Like stack of paper
 - Place new on top
 - Remove when needed from top
 - Called "last-in/first-out" memory structure
- Recursion uses stacks
 - Each recursive call placed on stack
 - When one completes, last call is removed from stack

Thinking Recursively

- Ignore details
 - Forget how stack works
 - Forget the suspended computations
 - Yes, this is an "abstraction" principle!
 - And encapsulation principle!
- Let computer do "bookkeeping"
 - Programmer just think "big picture"

Stack Overflow

- Size of stack limited
 - Memory is finite
- Long chain of recursive calls continually adds to stack
 - All are added before base case causes removals
- If stack attempts to grow beyond limit:
 - Stack overflow error
 - Infinite recursion always causes this
Recursive Design Check: power()

• Check power() against 3 properties:
 1. No infinite recursion:
 • 2nd argument decreases by 1 each call
 • Eventually must get to base case of 1
 2. Stopping case returns correct value:
 • power(x,0) is base case
 • Returns 1, which is correct for x^0
 3. Recursive calls correct:
 • For n>1, power(x,n) returns power(x,n-1)*x
 • Plug in values → correct

Thinking Recursively: power

• Consider power() again
• Recursive definition of power:
 power(x, n)

returns:

power(x, n – 1) * x
 – Just ensure "formula" correct
 – And ensure base case will be met

Recursive Design Techniques

• Don’t trace entire recursive sequence!
• Just check 3 properties:
 1. No infinite recursion
 2. Stopping cases return correct values
 3. Recursive cases return correct values