
C++ Basics

CS2141 – Software Development using C/C++

C++ Basics 2

Integers – Basic Types

● Can be short, long, or just plain int

● C++ does not define the size of them other than
short <= int <= long

● They could all be the same size
● Commonly at least two of them are the same size
● The sizeof operator can be used to find out the size:

cout << “A short int is “ <<
 sizeof(short int) <<
 “ bytes” << endl;

C++ Basics 3

Integers – Signed and Unsigned

● Integers can also be signed or unsigned

● Unsigned integers use the sign bit for the number
● An unsigned int can only hold positive numbers

● An unsigned int will hold a bigger positive number
than a signed int

● Integers are signed by default
● An unsigned long int holds the largest positive

integer value
● A signed short int is the “shortest”

C++ Basics 4

Integers – Division and Modulus

● C++ leaves the outcome of a few operations up
to the platform

● Integer division and modulus with negative operands
are two of those unspecified operations

● -23 / 4 could be -5 or -6

● -23 % 4 could be -3 or 1

● It will always be true that:
a == (a / b) * b + a % b

C++ Basics 5

Characters – Basic Types

● A char is typically only 8 bits
● C++ only defines a minimum length, so longer characters

are allowed
● A w_char is longer than a char, usually the same as a
short

● Characters can be signed or unsigned
● char is unsigned by default
● signed char can be used to store small integers

C++ Basics 6

Using Characters

● Characters can be used in arithmetic expressions:
char c = ' ' + '!'; // c will be 'A'
int x = '9' - '0'; // x will be 9

● There are many ways to represent a character:
● A character: 'n'

● ASCII: '\156'

● Hexadecimal (note the 0x prefix): '\0x6e'

● An integer: 110

● Strings are often stored as an array of characters,
terminated by a '\0' (the null character).

C++ Basics 7

Booleans

● A bool is a single bit:
● 1 for true
● 0 for false

● A bool can be used as an integer:
 bool test = true;
 int i = 2 + test;
 test = test - 1;

● The bool type is relatively new to C++. There used
to be various competing designs, which might be
encountered in older code.

C++ Basics 8

Using Integers as Booleans

● Integers are often used
as a boolean type:
● Zero is false
● Any other value is true

int i = 10;

while(i)

{

// Do something

// until i is 0

i--;

}

C++ Basics 9

Real Numbers – Basic Types

● Can be float, double, or long double
● float is the smallest
● long double is the biggest

● Most math libraries use doubles, so it is better to use
double rather than float

● Some platforms may provide values like Nan,
NEGATIVE_INFINITY, and POSITIVE_INFINITY,
but they are not required by the language

C++ Basics 10

Conversion Between Data
Types

● C++ will convert operand data types if necessary:
int i;
double d = 3.14159;
i = d; // May create a warning,
 // but it will work.
i = (int)d; // Use cast to avoid warning.

● Be aware of data types in expressions:
int a = 3;
int b = 2;
float c = (a + b) / 2; // 2.0, not 2.5

C++ Basics 11

Enumerations

● An enumeration creates a distinct integer type with named values:

enum color { red, orange, yellow };
color bgColor = red;
if(bgColor == orange) ...

● Each of the names can only be used once in any specific namespace:

// This will cause an error
enum fruit { apple, pear, orange };

● Integer values can be specified. If a value is not provided, the previous
value is incremented:

enum axes { X = 0, Y = 1, Z = 2 };
enum letters { A = 0, B, C };

C++ Basics 12

Basic Stream I/O

#include <iostream> // I/O function definitions
using namespace std;

int a, b; // Variable declarations

// Basic integer input
cin >> a >> b;

// Basic string output
cout << “Hello world” << endl;
cout << a << “ + “ << b << “ = “ <<
a + b << endl;

C++ Basics 13

Declaring Arrays

● Arrays are declared by the name and the number of
elements

● The new directive does not have to be used to
allocate an array

● The number of elements can be omitted if there is a
way for the compiler to determine it
int data[100];
char text[] = “This is an example of an array”;
int evens[] = {2, 4, 6, 8, 10, 12, 16, 18};

● C++ arrays do not know their own size, you must
keep track of it yourself

C++ Basics 14

Using Arrays

● The number of elements can also be omitted if the array is passed
as an argument to a function:

double average(int n, double data[])
{

double sum = 0;

for(int i = 0; i < n; i++)

{

sum += data[i];
}

return sum / n;

}

● Notice that the parameter n is used to pass the size of the array

C++ Basics 15

Working with Objects

● Consider the following Java code:
public class TestClass
{

public int value;

public static void main(String[] args)
{
TestClass obj1 = new TestClass();
TestClass obj2;
obj1.value = 12;
obj2 = obj1;
obj1.value = 18;
System.out.println(“obj1 value “ + obj1.value);
System.out.println(“obj2 value “ + obj2.value);

}
}

C++ Basics 16

Working with Objects cont.

● Java uses reference sematics for assignments, so
when the code is run, both obj1 and obj2 are
variables that end up referring to the same object:

C++ Basics 17

Working with Objects cont.

● Now consider the C++ version:
class TestClass
{

public:
int value;

};

int main()
{

TestClass obj1;
TestClass obj2;
obj1.value = 12;
obj2 = obj1;
obj1.value = 18;
cout << “obj1 value “ << obj1.value << endl;
cout << “obj2 value “ << obj2.value << endl;

}

C++ Basics 18

Working with Objects cont.

● C++ uses copy semantics for assignments, so when
the code is run obj1 and obj2 are two different
objects with different values:

C++ Basics 19

Working with Objects cont.

● Difference:
● In the Java version, obj1 and obj2 are references to a

TestClass object
● In the C++ version, obj1 and obj2 are TestClass

objects

● If access by reference is needed, it is left to the
programmer in C++ (more on references later):
TestClass obj1;
obj1.value = 12;
TestClass & obj2 = obj1;
obj1.value = 18;

C++ Basics 20

Function Definitions

● C++ allows functions to be defined outside of
classes. These are called global functions

● Functions are invoked by using their name.
int max(int i, int j)
{

if(i < j)
return j;

return i;
}
int x = 283;
int y = 482;
int z = max(x, y);

C++ Basics 21

Function prototypes

● A function prototype simply defines the name and
argument types of a function
● There is no function body
● Argument names can be used but are not required

● Prototypes are necessary because the compiler must
know a function exists before the function can be
invoked

● The prototype for the max function would be:

 int max(int, int);

C++ Basics 22

The main function

● Execution of a C++ program begins in the function
main

● main is not part of any class
● It should not be declared static

● The return type must be int
● Older compilers might accept void
● Returning zero means successful completion
● The meaning of other values is up to the compiler or

even the programmer

C++ Basics 23

The main function cont.

● There can be zero or two parameters:
● Zero parameters:

 int main()
● Two parameters:
 int main(int argc, char ** argv)

● The first parameter is an integer passing the number of
arguments to the program.

● The second parameter is an array of strings passing any
command-line arguments to the program.

● The first argument to a C++ program (argv[0]) is
always the program name.

C++ Basics 24

“Hello World” - revisited

#include <iostream>
using namespace std;

int main(int argc, char ** argv)
{

cout << “Hello World!” << endl;
cout << “From “ << argv[0] << endl;
return 0;

}

