CS2141 — Software Development using C/C++

Pointers

What is a pointer?

* A pointer 1s simply a variable that stores the
memory address of some other value

* All pointers on a given machine are the same size
since all memory addresses are the same size

Int 1 = 147; P

address of i

Int * p = & ;

Pointers

Pointers 1n Java

e Does Java have pointers? Recall the Java program
from before:

public class Test(d ass {
public int val ue;

public static void main(String[] args) {
TestCl ass obj1 = new Testd ass();
Test C ass obj 2;
obj 1. val ue = 12;
obj 2 = obj 1;
obj 1. val ue = 18;
Systemout.println(“obj1 value “ + obj1.value);
Systemout.println(“obj2 value “ + obj2.value);

Pointers

Pointers 1n Java cont.

* And the C++ program from before:
cl ass Test C ass {

publ i

C.

| nt val ue;

i

int main() {
Test Cl ass obj 1;
Test G ass obj 2;

obj 1.
obj 2
obj 1.
cout
cout

val ue = 12;
= obj 1;
val ue = 18;

<< “obj 1 value *
<< “obj 2 value *

<< obj 1.val ue << endl;
<< 0bj 2. val ue << endl;

Pointers

Pointers 1n Java cont.

e Remember the results:

TestClass
18

Java (object references) C++ (object values)

objl obj2
TestClass TestClass

18 12

Pointers 1n Java cont.

 Now consider this C++ program:

cl ass Test d ass {
publ i c:
| nt val ue;

i

Int main() {
Test ass * obj1 = new Testd ass();
Test Cl ass * obj 2;
obj 1->val ue = 12;
obj 2 = obj 1;
obj 1- >val ue = 18;
cout << “obj 1 value " << obj1l->value << endl;
cout << “obj 2 value " << obj2->val ue << endl;

Pointers

Pointers 1n Java cont.

e When run, 1t works like the Java version, with obj 1
and obj 2 pointing at the same object:

TestClass
18

So does Java have pointers?

Pointers

Declaring a Pointer

* A pointer 1s declared using the data type of the value
it will point at and an asterisk:

float * fp; // pointer to a fl oat

* A null pointer 1s a pointer value that does not refer
to any memory location

e A pointer can be made null by assigning zero to it:
char * s = 0;

* Since a pointer is either null (zero) or non-null (not zero),
it can be used as a boolean like an integer

Pointers 8

Assigning Values to Pointers

e Three ways to assign pointers:

e Using new, which returns a pointer:
TestClass * obj1 = new TestC ass();

e Copying an existing pointer:
TestClass * obj2 = obj 1;

o The address-of operator (&) 1s used to get the memory
address of an existing value:

Test Cl ass obj 3;
obj 2 = &obj 3;

Pointers

Dereferencing a Pointer

* A pointer can be dereferenced to access the value 1t
points at. There are several ways to do this:

e The * operator — if a variable p 1s holding the address of a
value, then * p is the value pointed at by p

/| Reserve space for a new
/'l 1 nteger and have p point
[/ at that space

Int * p = new I nt;

/] Set the value of the
/] Integer p points at to 5
*p —_ 5;

Pointers 10

Dereferencing a Pointer cont.

e A pointer to a class can combine dereferencing
and member field access using the pointer

operator - >.
[/ Declare a pointer to
/] a Testd ass obj ect
Test Cl ass * obj;

/] Allocate a Testd ass

/| object and set obj TestClass
[/ to point at it
obj = new Testd ass(); 934

/|l Set the value field

[/ of the TestC ass obj ect
/] ob] points at to 934
obj - >val ue = 934; Pointers

Dereferencing a Pointer cont.

* A pointer to an array can be subscripted to access
array elements (more on pointers and arrays
later):

fl oat * vals;

vals = new fl oat[15];
val s[6] = -27. 8;

e An integer can be added to or subtracted from a
pointer to yield a new pointer:

float * vals2 = vals + 10;

Pointers 12

Pointer Operations

* Pointers to primitive data types should only be used in two
operations; comparing for equality (or inequality) and
dereferencing:

Int * p = new int;
Int * dq = new int;
1f(p==q) [// Decide I f p and q poi nt
*P = 5 // to the sanme | ocation
el se [/l 1f(p!l=q)
*q:6;

e Other operations are possible, but they don't make much
sense:

if(p<g) ... /1 \What ?2?

Pointers

13

Reassigning Pointers

e The location a pointer points at can be changed with
another assignment:

| Nt nunberl = 7;
| nt nunber?2 = 18;
Int * p;

p = &nunber 1,

STteadaET 1

&nhumber2

p = &nunber 2,

Pointers 14

Using Pointers

e Dereferenced values can be used 1n any operation
(including math):

*P = *p + nunber 1,
 Modifying a pointer 1s not the same as modifying
the value 1t points at:

p = &unberl; // Modifying the pointer.
*p = 42, [/ NModifying the val ue
[/ p points at.

Pointers

15

Pointers and Arrays

e Pointers and arrays are very closely related

e Any pointer can be subscripted

e An array variable can be assumed to be a pointer

| nt val ues[100];
Int * cows = val ues;

/|l These are the sane:
cows[4] = 12,

val ues[4] = 12;

*(cows + 4) = 12;
*(values + 4) = 12;

Pointers

Pointers and Arrays cont.

e Subscripts are never checked for range.

e The following subscripts are all legal (the compiler will
not complain), but incorrect:
cows[250] = 83;
val ues[-27] = 42;
TestClass * obj1 = new TestC ass();
obj 1] 5] . val ue = 8§;

e Rarely 1s there a need for an out of range subscript.
e If 1t happens, it 1s usually a programming error.

e The same thing can happen with pointer arithmetic.

Pointers 17

Pointer to Pointers

e Multiple dereferences of the same variable are
possible and sometimes convenient.

* An example 1s a multi-dimensional array:

I nt 1

Int ** pigs = new int*[4];

for(i =0; i < 4; i++)

pigs[i] = newint[2];

pigs[2][0] = 23;

Pointers

18

Global Pointers to Local Variables

* Global pointers to local variables are a bad 1dea:
Int * ptr; [/ A gl obal pointer

void set() {
| nt nunber ;
nunber = 8;
ptr = &nunber;
}

voi d use() {
doubl e val ue;
val ue = 30; [/ Assign a val ue.
val ue += *ptr; /] Use the val ue
} [/ ptr points at.

Pointers

19

Global Pointers to Local Variables
cont.

e The code will probably fail:

number

e When set 1srun, pt r 1s set to point at 5
the local variable nunber .

« Since it is a local variable, nunber is
destroyed when set returns, but pt r

still points at the memory location
where nunber was.

e Use then uses the value pt r points at,

but that value will very likely not be the
one the programmer expected.

Pointers

Pointers and const

* A pointer to a constant:

I Nt nunber = 15;
const Iint * ptrl = &unber;

*ptrl = 25; /] not all owed

e A constant pointer:

Int * const ptr2 = &nunber;
*ptr2 = 32; /1 allowed
ptr2 = ptrl; /1 not all owed

e A constant pointer to a constant:
const Int * const ptr3 = &nunber;

Pointers 21

vol d pointers

e Avoi d * pointer can point to anything

e Can be used much like the Qbj ect type in Java
e Any pointer can be converted into a voi d * pointer
e Converting voi d * pointer back requires a cast:

doubl e real;
double * rptr = ℜ

void * gptr = rptr;

doubl e * rptr2;
rptr2 = (double *)gptr; // Converting back

Pointers

Function Pointers

e A pointer can also point to a function:

Int next_n(int n) {
return n + 1;

}

/] Declaring a function pointer fun ptr
Int (*fun_ptr)(int);

[/ Assigning it to point to next n
fun ptr = &next n;

[l O
fun_ptr = next _n;

Pointers

23

Function Pointers cont.

e Using fun ptr:

| nt Xx;

[/ Using fun ptr
X = (*fun_ptr)(x);

Il O
X = fun_ptr(x);

* Do not use pointers to member functions.

e The syntax 1s extremely obscure.

e Such pointers are very rarely needed.

Pointers

24

