
Pointers

CS2141 – Software Development using C/C++

Pointers 2

What is a pointer?

● A pointer is simply a variable that stores the
memory address of some other value

● All pointers on a given machine are the same size
since all memory addresses are the same size

int i = 147;

int * p = &i;

Pointers 3

Pointers in Java

● Does Java have pointers? Recall the Java program
from before:
public class TestClass {

public int value;

public static void main(String[] args) {
TestClass obj1 = new TestClass();
TestClass obj2;
obj1.value = 12;
obj2 = obj1;
obj1.value = 18;
System.out.println(“obj1 value “ + obj1.value);
System.out.println(“obj2 value “ + obj2.value);

}
}

Pointers 4

Pointers in Java cont.

● And the C++ program from before:
class TestClass {

public:
int value;

};

int main() {
TestClass obj1;
TestClass obj2;
obj1.value = 12;
obj2 = obj1;
obj1.value = 18;
cout << “obj1 value “ << obj1.value << endl;
cout << “obj2 value “ << obj2.value << endl;

}

Pointers 5

Pointers in Java cont.

● Remember the results:

C++ (object values)Java (object references)

Pointers 6

Pointers in Java cont.

● Now consider this C++ program:
class TestClass {

public:
int value;

};

int main() {
TestClass * obj1 = new TestClass();
TestClass * obj2;
obj1->value = 12;
obj2 = obj1;
obj1->value = 18;
cout << “obj1 value “ << obj1->value << endl;
cout << “obj2 value “ << obj2->value << endl;

}

Pointers 7

Pointers in Java cont.

● When run, it works like the Java version, with obj1
and obj2 pointing at the same object:

So does Java have pointers?

Pointers 8

Declaring a Pointer

● A pointer is declared using the data type of the value
it will point at and an asterisk:

float * fp; // pointer to a float

● A null pointer is a pointer value that does not refer
to any memory location
● A pointer can be made null by assigning zero to it:

char * s = 0;

● Since a pointer is either null (zero) or non-null (not zero),
it can be used as a boolean like an integer

Pointers 9

Assigning Values to Pointers

● Three ways to assign pointers:
● Using new, which returns a pointer:

TestClass * obj1 = new TestClass();

● Copying an existing pointer:

TestClass * obj2 = obj1;

● The address-of operator (&) is used to get the memory
address of an existing value:

TestClass obj3;
obj2 = &obj3;

Pointers 10

Dereferencing a Pointer

● A pointer can be dereferenced to access the value it
points at. There are several ways to do this:
● The * operator – if a variable p is holding the address of a

value, then *p is the value pointed at by p

// Reserve space for a new
// integer and have p point
// at that space
int * p = new int;

// Set the value of the
// integer p points at to 5
*p = 5;

Pointers 11

Dereferencing a Pointer cont.

● A pointer to a class can combine dereferencing
and member field access using the pointer
operator ->.

// Declare a pointer to
// a TestClass object
TestClass * obj;

// Allocate a TestClass
// object and set obj
// to point at it
obj = new TestClass();

// Set the value field
// of the TestClass object
// obj points at to 934
obj->value = 934;

Pointers 12

Dereferencing a Pointer cont.

● A pointer to an array can be subscripted to access
array elements (more on pointers and arrays
later):

float * vals;
vals = new float[15];
vals[6] = -27.8;

● An integer can be added to or subtracted from a
pointer to yield a new pointer:
float * vals2 = vals + 10;

Pointers 13

Pointer Operations

● Pointers to primitive data types should only be used in two
operations; comparing for equality (or inequality) and
dereferencing:

int * p = new int;
int * q = new int;
if(p == q) // Decide if p and q point

*p = 5; // to the same location
else // if(p != q)

*q = 6;

● Other operations are possible, but they don't make much
sense:

if(p < q) ... // What??

Pointers 14

Reassigning Pointers

● The location a pointer points at can be changed with
another assignment:

int number1 = 7;
int number2 = 18;
int * p;
p = &number1;

...

p = &number2;

Pointers 15

Using Pointers

● Dereferenced values can be used in any operation
(including math):

*p = *p + number1;

● Modifying a pointer is not the same as modifying
the value it points at:

p = &number1; // Modifying the pointer.
*p = 42; // Modifying the value
 // p points at.

Pointers 16

Pointers and Arrays

● Pointers and arrays are very closely related
● Any pointer can be subscripted
● An array variable can be assumed to be a pointer

int values[100];
int * cows = values;

// These are the same:
cows[4] = 12;
values[4] = 12;
*(cows + 4) = 12;
*(values + 4) = 12;

Pointers 17

Pointers and Arrays cont.

● Subscripts are never checked for range.
● The following subscripts are all legal (the compiler will

not complain), but incorrect:
cows[250] = 83;
values[-27] = 42;
TestClass * obj1 = new TestClass();
obj1[5].value = 8;

● Rarely is there a need for an out of range subscript.
● If it happens, it is usually a programming error.
● The same thing can happen with pointer arithmetic.

Pointers 18

Pointer to Pointers

● Multiple dereferences of the same variable are
possible and sometimes convenient.

● An example is a multi-dimensional array:

int i;

int ** pigs = new int*[4];
for(i = 0; i < 4; i++)

pigs[i] = new int[2];

pigs[2][0] = 23;

Pointers 19

Global Pointers to Local Variables

● Global pointers to local variables are a bad idea:

int * ptr; // A global pointer

void set() {
 int number;
 number = 8;
 ptr = &number;
}

void use() {
 double value;
 value = 30; // Assign a value.
 value += *ptr; // Use the value
} // ptr points at.

Pointers 20

Global Pointers to Local Variables
cont.

● The code will probably fail:
● When set is run, ptr is set to point at

the local variable number.

● Since it is a local variable, number is
destroyed when set returns, but ptr
still points at the memory location
where number was.

● use then uses the value ptr points at,
but that value will very likely not be the
one the programmer expected.

Pointers 21

Pointers and const

● A pointer to a constant:
int number = 15;
const int * ptr1 = &number;
*ptr1 = 25; // not allowed

● A constant pointer:
int * const ptr2 = &number;
*ptr2 = 32; // allowed
ptr2 = ptr1; // not allowed

● A constant pointer to a constant:
const int * const ptr3 = &number;

Pointers 22

void pointers

● A void * pointer can point to anything
● Can be used much like the Object type in Java

● Any pointer can be converted into a void * pointer

● Converting void * pointer back requires a cast:

double real;
double * rptr = ℜ

void * gptr = rptr;

double * rptr2;
rptr2 = (double *)gptr; // Converting back

Pointers 23

Function Pointers

● A pointer can also point to a function:
int next_n(int n) {
return n + 1;
}

// Declaring a function pointer fun_ptr
int (*fun_ptr)(int);

// Assigning it to point to next n
fun_ptr = &next_n;

// Or
fun_ptr = next_n;

Pointers 24

Function Pointers cont.

● Using fun_ptr:
int x;

// Using fun_ptr
x = (*fun_ptr)(x);

// Or
x = fun_ptr(x);

● Do not use pointers to member functions.
● The syntax is extremely obscure.
● Such pointers are very rarely needed.

