CS2141 — Software Development using C/C++

The Memory Model



Memory Management

e C++ leaves memory management mostly up to the
programmer

 This makes it possible to write programs that use memory
very efficiently

e This also makes 1t possible to write programs that waste
memory or do not work at all

e Writing efficient (or even working!) programs in
C++ requires an understanding of the memory
model and memory management operations
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Memory Management Errors

e Errors caused by poor memory management:

e Using a variable before 1t has been initialized
e Allocating memory for storage and not deleting it
» Using a value after it has been deleted

e To avoid these errors:

e Always mitialize variables

e Always free memory when done with 1t

e Always be sure the memory is no longer in use
before deleting 1t
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The Memory Model

 Memory 1s divided into the

stack and the heap. Stack Heap

 Memory values are then stack-
resident or heap-resident.

o Stack-resident values are created
and freed when a function starts
and ends.

e Heap-resident values are created
using the new operator and freed

using the del et e operator.
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Stack Resident Values

* When a function starts, an >tack
activation record for that
function 1s put on the stack.

 The activation record | A
contains, among other things, nggfef‘;’;[’;c’ »Record
the parameters and local Spacefori | | fortest()
variables of the function.

e Local variables are anything Record
not created with the new for moo( )
operator. Record

for main()
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Stack Resident Values cont.

e Consider the following code:
void test( float d )

t

nt 1;

I nt af 10];

int * b = newint[20];

my(Cbj ect no;

nyCbject * Jjo = new MyQbject( );
}

e What 1s on the stack?

The Memory Model



Stack-resident Values cont.

e Good: Can be allocated and freed quickly

e Bad: The size of stack-resident values must be
known at compile time

* Good and bad: The lifetime of stack-resident values
1s limited, but very predictable

e Values are allocated when a function starts, and cease to
exist when the function returns

e Trying to use a stack-resident value after 1ts function exits
typically leads to errors
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A Lifetime Error

 What's wrong here?

char * fullLine( ) {
char buffer[256]; // Declare a buffer.

char ch;
Int 1 ;
cin.get( ch ); /| Reads a single char
for( 1 =0;, ch!="\n" && 1 < 255; ++i )
{
buffer[i] = ch;
cin.get( ch );
}
buffer[i] = "\0";
return buffer; [/ Return the |Ine.

The Memory Model



A Lifetime Error cont.

* Once the function returns, the contents of buf f er
will be gone

e Possible ways around this:

e A global buffer (not recommended)

e Pass the array 1n by reference:
char * fullLine( char * buffer )

e Declare the buffer using new:
char * buffer = new char| 256];
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Size Error 1

e With arrays, be careful not to overwrite other values
on the stack by going past the ends:

char buffer[ 256]; /[l G obal array
char * brokenReadLi ne( )

{
gets( buffer ); // Don't use gets!

return buffer:

}

e Since get s() has no 1dea how big buf f er 1s, it
could easily overwrite other data following buf f er
In memory
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Size Error 2 (Slicing)

e Class Checking extends
class Account, so class
Account has two data
members
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Size Error 2 cont.

e Suppose we have the following code:
Checki ng b;
Account a = Db;

« When b is assigned to a, the members of b that are
not part of class Checki ng will be sliced off:

Account Checking a b

e Slicing only happens with stack-resident objects!
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Heap-resident Values

e The heap, or free store, 1s separate from
the stack

e Unlike the stack, the creation and destruction of
heap values 1s entirely up to the programmer

e Heap values are allocated with new operator
« The del et e operator is used to free heap values

e Usethe del et e[ ] operator to free arrays. This ensures

that the destructor gets called for all objects 1n the array,
not just the first one
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Heap-resident values cont.

e Heap-resident values are typically accessed through
a pointer, which 1s often on the stack.

e Checking for memory allocation errors 1s left up to
the programmer:

voi d doThi ngs( )

{
float * data = new fl oat[ 150];
|1 f( data == 0 ) /[l newwl| return O
return; [/ 1f an error occured

déiete[] dat a;
}
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e The compiler 1s not obligated to check for this.

Heap Errors

Forgetting to allocate the memory and using a pointer as 1f it had

been initialized:

char * text;
text[5] ="'q";

Using delete on the same memory multiple times:

delete [] text;

déiete [] text;

/| oops!

Sometimes this goes undetected and causes no harm, other times

the program crashes.
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Heap Errors cont.

e Forgetting to free unused memory:
Nt * oops,;
for( int 1 =0; 1 <500; 1++ )

{
oops = new I nt[1000];
[/ Stuff that doesn't del ete oops
}

e This 1s sometimes called a memory leak.

e Memory leaks are not always harmful, but if a program 1s
running for a long time or allocating lots of memory very
quickly, 1t could run out of memory.
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Heap Errors cont.

e Attempting to use memory after deleting it:
float * scores = new fl oat[ 35];

delete [] scores;

scores[7] = 93.2; // oh no!

e Usually caused by too intensively trying to avoid memory
leaks.

e Usually this 1s a fatal error.

The Memory Model 17



Avoiding Heap Errors

e A simple rule: Every time a programmer uses
the new operator, he should be able to 1dentify
the situations when the associated delete should be
1ssued

 Two common ways to avoid errors:

e Hide the memory allocation in an object, making the
object the owner of that heap-resident memory.
* When the object 1s destroyed, 1t should delete that memory

e If the object 1s stack-resident, the lifetime of the heap-resident
value 1s then easily predictable

e Maintain a reference count as part of the value
The Memory Model
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Example 1

cl ass Storage {
publ i c:
Storage( int s ) { space = newint[s]; }
Int & operator[]( int i ) { return spacel[i]; }
~Storage( ) { delete [] space; }
private:
Il nt * space;

b

voi d doThings( int n)

{ /] The array all ocated
Storage data( n ); [/ by data wll Dbe
data[n - 1] = 8; /] del eted when the

} [/ function returns.
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Example 2

cl ass Storage {

publ i c:
Storage(int s) : {refCount = 0O;space = new int[s];}
I nt refCount;

Il nt * space;

'

Storage * data = new Storage( 25 );
dat a- >r ef Count ++;

[/ Only delete it If there are no references to it

| f( data->refCount == 0 )
del et e dat a. space;
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