
The Memory Model

CS2141 – Software Development using C/C++

The Memory Model 2

Memory Management

● C++ leaves memory management mostly up to the
programmer
● This makes it possible to write programs that use memory

very efficiently
● This also makes it possible to write programs that waste

memory or do not work at all

● Writing efficient (or even working!) programs in
C++ requires an understanding of the memory
model and memory management operations

The Memory Model 3

Memory Management Errors

● Errors caused by poor memory management:
● Using a variable before it has been initialized
● Allocating memory for storage and not deleting it
● Using a value after it has been deleted

● To avoid these errors:
● Always initialize variables
● Always free memory when done with it
● Always be sure the memory is no longer in use

before deleting it

The Memory Model 4

The Memory Model

● Memory is divided into the
stack and the heap.

● Memory values are then stack-
resident or heap-resident.
● Stack-resident values are created

and freed when a function starts
and ends.

● Heap-resident values are created
using the new operator and freed
using the delete operator.

The Memory Model 5

Stack Resident Values

● When a function starts, an
activation record for that
function is put on the stack.
● The activation record

contains, among other things,
the parameters and local
variables of the function.

● Local variables are anything
not created with the new
operator.

The Memory Model 6

Stack Resident Values cont.

● Consider the following code:
void test(float d)
{

int i;
int a[10];
int * b = new int[20];
myObject mo;
myObject * jo = new MyObject();
...

}

● What is on the stack?

The Memory Model 7

Stack-resident Values cont.

● Good: Can be allocated and freed quickly
● Bad: The size of stack-resident values must be

known at compile time
● Good and bad: The lifetime of stack-resident values

is limited, but very predictable
● Values are allocated when a function starts, and cease to

exist when the function returns
● Trying to use a stack-resident value after its function exits

typically leads to errors

The Memory Model 8

A Lifetime Error

● What's wrong here?
char * fullLine() {

char buffer[256]; // Declare a buffer.
char ch;
int i;
cin.get(ch); // Reads a single char
for(i = 0; ch != '\n' && i < 255; ++i)
{

buffer[i] = ch;
cin.get(ch);

}
 buffer[i] = '\0';
return buffer; // Return the line.

}

The Memory Model 9

A Lifetime Error cont.

● Once the function returns, the contents of buffer
will be gone

● Possible ways around this:
● A global buffer (not recommended)
● Pass the array in by reference:

char * fullLine(char * buffer)

● Declare the buffer using new:

char * buffer = new char[256];

The Memory Model 10

Size Error 1

● With arrays, be careful not to overwrite other values
on the stack by going past the ends:

char buffer[256]; // Global array
char * brokenReadLine()
{

gets(buffer); // Don't use gets!
return buffer;

}

● Since gets() has no idea how big buffer is, it
could easily overwrite other data following buffer
in memory

The Memory Model 11

Size Error 2 (Slicing)

● Class Checking extends
class Account, so class
Account has two data
members

Account

InterestRate: double

Checking

WithdrawalLimit: int

The Memory Model 12

Size Error 2 cont.

● Suppose we have the following code:

Checking b;
Account a = b;

● When b is assigned to a, the members of b that are
not part of class Checking will be sliced off:

● Slicing only happens with stack-resident objects!

InterestRate InterestRate

WithdrawalLimit

InterestRate InterestRate

WithdrawalLimit

CheckingAccount a b

The Memory Model 13

Heap-resident Values

● The heap, or free store, is separate from
the stack

● Unlike the stack, the creation and destruction of
heap values is entirely up to the programmer
● Heap values are allocated with new operator

● The delete operator is used to free heap values

● Use the delete[] operator to free arrays. This ensures
that the destructor gets called for all objects in the array,
not just the first one

The Memory Model 14

Heap-resident values cont.

● Heap-resident values are typically accessed through
a pointer, which is often on the stack.

● Checking for memory allocation errors is left up to
the programmer:

void doThings()
{
 float * data = new float[150];
 if(data == 0) // new will return 0
 return; // if an error occured
 ...
 delete[] data;
}

The Memory Model 15

Heap Errors

● Forgetting to allocate the memory and using a pointer as if it had
been initialized:

char * text;
text[5] = 'q'; // oops!

● The compiler is not obligated to check for this.

● Using delete on the same memory multiple times:

delete [] text;
...
delete [] text;

● Sometimes this goes undetected and causes no harm, other times
the program crashes.

The Memory Model 16

Heap Errors cont.

● Forgetting to free unused memory:

int * oops;
for(int i = 0; i < 500; i++)
{

oops = new int[1000];
... // Stuff that doesn't delete oops

}

● This is sometimes called a memory leak.
● Memory leaks are not always harmful, but if a program is

running for a long time or allocating lots of memory very
quickly, it could run out of memory.

The Memory Model 17

Heap Errors cont.

● Attempting to use memory after deleting it:

float * scores = new float[35];
...
delete [] scores;
...
scores[7] = 93.2; // oh no!

● Usually caused by too intensively trying to avoid memory
leaks.

● Usually this is a fatal error.

The Memory Model 18

Avoiding Heap Errors

● A simple rule: Every time a programmer uses
the new operator, he should be able to identify
the situations when the associated delete should be
issued

● Two common ways to avoid errors:
● Hide the memory allocation in an object, making the

object the owner of that heap-resident memory.
● When the object is destroyed, it should delete that memory
● If the object is stack-resident, the lifetime of the heap-resident

value is then easily predictable
● Maintain a reference count as part of the value

The Memory Model 19

Example 1

class Storage {
public:
Storage(int s) { space = new int[s]; }
int & operator[](int i) { return space[i]; }
~Storage() { delete [] space; }
private:
int * space;

};

void doThings(int n)
{ // The array allocated

Storage data(n); // by data will be
data[n - 1] = 8; // deleted when the

} // function returns.

The Memory Model 20

Example 2

class Storage {
public:
Storage(int s) : {refCount = 0;space = new int[s];}
int refCount;
int * space;

};

Storage * data = new Storage(25);
data->refCount++;
...
// Only delete it if there are no references to it
if(data->refCount == 0)

delete data.space;

