CS2141 — Software Development using C/C++

The Memory Model

Memory Management

e C++ leaves memory management mostly up to the
programmer

 This makes it possible to write programs that use memory
very efficiently

e This also makes 1t possible to write programs that waste
memory or do not work at all

e Writing efficient (or even working!) programs in
C++ requires an understanding of the memory
model and memory management operations

The Memory Model

Memory Management Errors

e Errors caused by poor memory management:

e Using a variable before 1t has been initialized
e Allocating memory for storage and not deleting it
» Using a value after it has been deleted

e To avoid these errors:

e Always mitialize variables

e Always free memory when done with 1t

e Always be sure the memory is no longer in use
before deleting 1t

The Memory Model

The Memory Model

 Memory 1s divided into the

stack and the heap. Stack Heap

 Memory values are then stack-
resident or heap-resident.

o Stack-resident values are created
and freed when a function starts
and ends.

e Heap-resident values are created
using the new operator and freed

using the del et e operator.

The Memory Model

Stack Resident Values

* When a function starts, an >tack
activation record for that
function 1s put on the stack.

 The activation record | A
contains, among other things, nggfef‘;’;[’;c’ »Record
the parameters and local Spacefori | | fortest()
variables of the function.

e Local variables are anything Record
not created with the new for moo()
operator. Record

for main()

The Memory Model

Stack Resident Values cont.

e Consider the following code:
void test(float d)

t

nt 1;

I nt af 10];

int * b = newint[20];

my(Cbj ect no;

nyCbject * Jjo = new MyQbject();
}

e What 1s on the stack?

The Memory Model

Stack-resident Values cont.

e Good: Can be allocated and freed quickly

e Bad: The size of stack-resident values must be
known at compile time

* Good and bad: The lifetime of stack-resident values
1s limited, but very predictable

e Values are allocated when a function starts, and cease to
exist when the function returns

e Trying to use a stack-resident value after 1ts function exits
typically leads to errors

The Memory Model

A Lifetime Error

 What's wrong here?

char * fullLine() {
char buffer[256]; // Declare a buffer.

char ch;
Int 1 ;
cin.get(ch); /| Reads a single char
for(1 =0;, ch!="\n" && 1 < 255; ++i)
{
buffer[i] = ch;
cin.get(ch);
}
buffer[i] = "\0";
return buffer; [/ Return the |Ine.

The Memory Model

A Lifetime Error cont.

* Once the function returns, the contents of buf f er
will be gone

e Possible ways around this:

e A global buffer (not recommended)

e Pass the array 1n by reference:
char * fullLine(char * buffer)

e Declare the buffer using new:
char * buffer = new char| 256];

The Memory Model

Size Error 1

e With arrays, be careful not to overwrite other values
on the stack by going past the ends:

char buffer[256]; /[l G obal array
char * brokenReadLi ne()

{
gets(buffer); // Don't use gets!

return buffer:

}

e Since get s() has no 1dea how big buf f er 1s, it
could easily overwrite other data following buf f er
In memory

The Memory Model 10

Size Error 2 (Slicing)

e Class Checking extends
class Account, so class
Account has two data
members

The Memory Model

11

Size Error 2 cont.

e Suppose we have the following code:
Checki ng b;
Account a = Db;

« When b is assigned to a, the members of b that are
not part of class Checki ng will be sliced off:

Account Checking a b

e Slicing only happens with stack-resident objects!

The Memory Model 12

Heap-resident Values

e The heap, or free store, 1s separate from
the stack

e Unlike the stack, the creation and destruction of
heap values 1s entirely up to the programmer

e Heap values are allocated with new operator
« The del et e operator is used to free heap values

e Usethe del et e[] operator to free arrays. This ensures

that the destructor gets called for all objects 1n the array,
not just the first one

The Memory Model 13

Heap-resident values cont.

e Heap-resident values are typically accessed through
a pointer, which 1s often on the stack.

e Checking for memory allocation errors 1s left up to
the programmer:

voi d doThi ngs()

{
float * data = new fl oat[150];
|1 f(data == 0) /[l newwl| return O
return; [/ 1f an error occured

déiete[] dat a;
}

The Memory Model 14

e The compiler 1s not obligated to check for this.

Heap Errors

Forgetting to allocate the memory and using a pointer as 1f it had

been initialized:

char * text;
text[5] ="'q";

Using delete on the same memory multiple times:

delete [] text;

déiete [] text;

/| oops!

Sometimes this goes undetected and causes no harm, other times

the program crashes.

The Memory Model

15

Heap Errors cont.

e Forgetting to free unused memory:
Nt * oops,;
for(int 1 =0; 1 <500; 1++)

{
oops = new I nt[1000];
[/ Stuff that doesn't del ete oops
}

e This 1s sometimes called a memory leak.

e Memory leaks are not always harmful, but if a program 1s
running for a long time or allocating lots of memory very
quickly, 1t could run out of memory.

The Memory Model

16

Heap Errors cont.

e Attempting to use memory after deleting it:
float * scores = new fl oat[35];

delete [] scores;

scores[7] = 93.2; // oh no!

e Usually caused by too intensively trying to avoid memory
leaks.

e Usually this 1s a fatal error.

The Memory Model 17

Avoiding Heap Errors

e A simple rule: Every time a programmer uses
the new operator, he should be able to 1dentify
the situations when the associated delete should be
1ssued

 Two common ways to avoid errors:

e Hide the memory allocation in an object, making the
object the owner of that heap-resident memory.
* When the object 1s destroyed, 1t should delete that memory

e If the object 1s stack-resident, the lifetime of the heap-resident
value 1s then easily predictable

e Maintain a reference count as part of the value
The Memory Model

18

Example 1

cl ass Storage {
publ i c:
Storage(int s) { space = newint[s]; }
Int & operator[](int i) { return spacel[i]; }
~Storage() { delete [] space; }
private:
Il nt * space;

b

voi d doThings(int n)

{ /] The array all ocated
Storage data(n); [/ by data wll Dbe
data[n - 1] = 8; /] del eted when the

} [/ function returns.

The Memory Model

Example 2

cl ass Storage {

publ i c:
Storage(int s) : {refCount = 0O;space = new int[s];}
I nt refCount;

Il nt * space;

'

Storage * data = new Storage(25);
dat a- >r ef Count ++;

[/ Only delete it If there are no references to it

| f(data->refCount == 0)
del et e dat a. space;

The Memory Model 20

