
Class Definitions

CS2141 – Software Development using C/C++

Class Definitions 2

Visibility Modifiers

● Permissions for data members and member
functions:
● private: Can only be accessed by that class
● protected: Can be accessed by subclasses
● public: Can be accessed by anyone

● Class members are private by default

● Cannot be applied to the whole class:
public class A; // Don't do this!
protected class B; // Or this!

Class Definitions 3

Example

class Box // Class name
{

public: // Public members section

Box(int w) { weight = w; }
int getWeight() const { return weight; }

private: // Private members section

int weight;
}; // Notice the semicolon

Class Definitions 4

Example in UML

Box
­weight : int
+getWeight() : int

● Always 3 sections
– Name

– Data members

– Member functions

● Visibility modifiers
– Public (+)

– Private (-)

– Protected (#)

Class Definitions 5

Inline Methods

● A method that is implemented inside the class
definition is called an inline method.

● The compiler may choose to expand the body of the
method at the point of call.
● The compiled code executes faster since it avoids the

overhead of a function call.
● Inlining can make the compiled code larger and more

complex (usually not desirable properties).

● Use inlining only for very short methods.
● Never use them with loops or recursive calls.

Class Definitions 6

Class Interface

● Usually the class definition is in an interface (or
header) file, and the implementation in an
implementation (or source) file.
● Interface files usually have a .h extension.
● Implementation files can have a .cpp, .c++, or .C.
● The filename does not have to match the class name.

● A #include statement is used to include the class
definition into the implementation file:

#include “myclass.h”

Class Definitions 7

Fully Qualified Names

● Use a #ifndef ... #define ... #endif in the header
file to avoid including the class definition more than
once.

● Methods implemented in the source file use a fully
qualified function name.
● This avoids conflicts with other classes that have a method

with the same name.
● A fully qualified name consists of the class name, a

double colon, and the method name:

... ClassName::methodName ...

Class Definitions 8

Example

● box.h
#ifndef BOX_H
#define BOX_H

class Box
{
public:
Box(int w);
int getWeight() const;

private:
int weight;

};

#endif

● box.c
#include “box.h”

Box::Box(int w)
{

weight = w;
}

int Box::getWeight() const
{

return weight;
}

Class Definitions 9

Forward Declaration

● A class must be defined before it is used
● If a class name is used in another class definition, the first

class must be defined prior to the use
● This could be a problem if the first class also uses the

name of the second class

● A forward declaration is used to declare the name of
a class
● Permits pointers to the class to be declared
● Cannot invoke methods in the class (since they're

not defined yet)

Class Definitions 10

Example 1

class Chicken;

class Egg
{

public:
Chicken * parent;

};

class Chicken
{

public:
Egg * children;

}

Class Definitions 11

Example 2

class Link;

class List {
public:
...
private:

Link * head;
};

class Link {
Public:
int value;
Link * next;
Link * prev;

Link(int v,
 Link * n,
 Link * p);

void addBefore(int val,
 List *);

};

Class Definitions 12

Constructors

● Constructors serve two purposes: they create and
initialize an object

● A constructor is a method with the same name as
the class, and does not have a return type

● There are three types of constructors:
● A default constructor takes no arguments
● An ordinary constructor has some arguments
● A copy constructor is used to make copies (clone)

Class Definitions 13

Copy Constructor

● A copy constructor is used to make a copy of an
object value.
● It takes an instance of the same class as a constant

reference argument:

Box(const Box & b);

● A copy constructor is often called implicitly, such as when
passing by value:

Box a; // Default constructor gets
 // called implicitly, too.
doStuff(a); // Copy constructor called.

Class Definitions 14

Example

class Box {
public:
Box() // Default constructor
{ weight = 0; }

Box(int w) // Ordinary constructor
{ weight = w; }

Box(const Box & b) // Copy constructor
{ weight = b.weight; }

private:
int weight;

};

Class Definitions 15

Initializers

● Data members can be initialized by an assignment in
the constructor, or by an initializer:

class Box {
public:
Box() : v(0) { }
Box(int v) : val(v) { }
...

};

● Use initializers whenever possible to avoid
initializing a value twice (first by the default
constructor, then by the ordinary constructor).

Class Definitions 16

Double initialization

class Box {
public:
Box(int w)
{ weight = w; }

private:
int weight;

};

● The default constructor
for weight is called
before the function
body of the constructor

● Then weight is changed

Class Definitions 17

Order of Initialization

● Class members are initialized in the order they are
declared in the class body rather than in the order of
the initializers

// This class is broken
class Order {

public:
Order(int i) : one(i), two(one) { }
int test() const { return two; }

private:
int two; // initialized first
int one; // initialized second

};

Class Definitions 18

Example

● Correct class definition:
class Order {

public:
Order(int i) : one(i), two(one) { }
int test() const { return two; }

private:
int one; // initialized first
int two; // initialized second

};

Class Definitions 19

Combining Constructors

● It is not allowed to call one constructor from
another constructor:

class Box {
public:
Box(int a) : val1(a) { }
Box(int a, int b) : val2(b)
{

Box::Box(a); // This will not work!
}
private:
int val1, val2;

};

Class Definitions 20

Solution 1

● Use default arguments:
class Box
{

public:
Box(int a, int b=7) : val1(a),val2(b) { }

private:
int val1, val2;

};

● Even though only one constructor is defined, it can
be used with one or two arguments.

Class Definitions 21

Solution 2

● Put the common initialization code in a separate
private function:

class Box {
public:
Box(int a) { initialize(a); }
Box(int a, int b)
{

initialize(a);
...

}
private:
int initialize(int c);

};

Class Definitions 22

Destructors

● The destructor is implicitly called when an
object is deleted
● Object may have been explicitly deleted using delete
● An object could also be automatically deleted at the end of

a function if the object is stack-resident
● The destructor is never called directly

● The destructor is defined using a tilde followed by
the class name and takes no arguments:

~Box();

Class Definitions 23

Destructors cont.

● The destructor usually deletes any heap-resident
memory the object may have allocated:

class Storage {
public:
Storage(int s) { space = new int[s]; }
int & operator[](int i)
{ return space[i]; }

~Storage() { delete [] space; }

private:
int * space;

};

Class Definitions 24

The keyword this

● Every method has a pointer named this which
points to the object the method was invoked on

class Box {
public:
Box(int w) : weight(w) { }

Box & doStuff() {
this->weight = 73;
return *this;

}

private:
int weight;

};

Class Definitions 25

Nested Classes

● One class can be defined
within another class.

● If the nested class is defined
in the private section, only
the outer class will know it
exists.

● To access a nested class from
outside the outer class, a
fully qualified name must be
used (suppose Link is
public):

List::Link * l;

class List
{

private:
class Link
{

int value;
Link * next;

};
Link * head;

public:
...

};

Class Definitions 26

Friends

● A class can have friends that are allowed to access
its private data members and functions:

class Box {
public:
Box(int w) : weight(w) { }

// Allow access for global function operator<<
friend ostream & operator<<(ostream & out);

// Allow class Crate to access val
friend class Crate;

private:
int weight;

};

