CS2141 — Software Development using C/C++

Polymorphism

Polymorphism in C+

e All polymorphism in C++ 1s done using inheritance;
there 1s no concept of an interface

e A subclass 1s declared using the name of the class, a
colon, the visibility of the parent class, and the name
of the parent class:

cl ass 2DOhj ect class Circle : public 2DObject
{ {

publ i c: publ i c:

| Nt X_pos; | nt radius;

I nt y_pos; };
¥

Polymorphism 2

A Class Hierarchy

e Consider the following class hierarchy:

class Animal {

publ i c:

virtual void speak() = O;
}

class Bird : public Aninmal {
publ i c:

virtual void speak()

{ cout << “twitter”; }

b

Polymorphism

Animal

+speak(): void

JA

Bird

Mammal

+speak(): void

+speak(): void
+bark(): void

L

Cat

+speak(): void
+purr(}: voia

Dog

+speak(): wvoid
+bark(): void

A Class Hierarchy cont.

class Mammal : public Animal {

publ i c:

virtual void speak() { cout << “can't speak”; }
void bark() { cout << “can't bark”; }

'

class Cat : public Mammal ({

publ i c:

voi d speak() { cout << “neow”; }

virtual void purr() { cout << “purrrrr”; }

}

class Dog : public Mammal ({

publ i c:

virtual void speak() { cout << “woof!”; }
void bark() { cout << “woof!”; }

}

Polymorphism

Virtual and Non-Virtual Overriding

e Overriding occurs when a child class has a method
with the exact same type signature as one of the
parent class methods

e Binding 1s the process of deciding whether to
execute the parent's version or the child's version of
a method

e The keyword vi rt ual determines whether static
binding or dynamic binding 1s used

 vi rtual only appears in the class definition

Polymorphism

Static Binding

 virtual 1s not used when declaring the method:

voi d bark()
{ cout << “can't bark”; }

e The decision 1s made at compile time based on the
type of the variable:
Dog * d = new Dog();
Mammal * m = d;
d->bark(); [// woof!
m >bark(); // can't bark.

Polymorphism

Dynamic Binding

* virtual 1s used to declare the method:

virtual void speak()
{ cout << “woof!”; }

e The binding decision 1s made at run-time based on
the type of the object:
d- >speak(); [// woof!
m >speak(); [// woof!
Animal * a = d;
a->speak(); [/ woof!

Polymorphism

Limitations

e The validity of calling a method 1s always static. If a
method 1s not defined 1n a class or inherited from a
parent class, 1t cannot be called:

Dog * d = new Dog();

Animal * a = d;

d->bark(); // woof!

a->bark(); // Conmpile error, not allowed.

* Overriding only works with heap-resident values:

Mammal m = *d;
m speak(); // can't speak

Polymorphism 8

More Limitations

e Child classes cannot change the type of binding

* A method that 1s declared vi rt ual 1n a parent class will
always be vi r t ual in a child class, even if vi rt ual 1is
not used 1n the child class

o Similarly, a method that is not declared vi r t ual in the
parent class can never be made vi r t ual 1n the child
class

 Any method that is called from a constructor cannot
be overridden

e Virtual methods are never inlined

Polymorphism

Abstract Classes

* An abstract class (or abstract base class) 1s a class that
contains pure virtual methods.

e A pure virtual method does not have a body.

e It is instead assigned a null value:

class Ani mal {
publ i c:
virtual void speak() = 0;

b
 Abstract base classes can only be used through inheritance

e [t 1s impossible to create an instance of
an abstract class

Polymorphism

10

Downcasting

e C++ does not perform run time type checking

e If a pointer to a parent 1s type casted to point to a
child the behavior can be unpredictable:
Animal * a = new Dog();
Cat * ¢ = (Cat *) a;
c->purr(); /| behavior i1s undefi ned

e Note that only the data type associated with the pointer
1s being changed - the object the pointer points at 1s not
changed in any way.

Polymorphism

11

Downcasting cont.

e The RTTI (run-time type information system)
provides a mechanism to protect against this:
Animal * a = new Dog();
Cat * ¢ = dynamc _cast<Cat *>(a);
if(c)
cout << “Variable was a Cat” << endl;

el se
cout << “It was not a Cat” << endl:

A dynam c_cast will return a valid pointer 1if the
cast was successful, and 0 if not successful.

Polymorphism 12

Name Resolution

* The following code will ¢! ass Cow {

not compile:

publ i c:
void noo(int i);

Hol stein * betty = new Hol stein(); };

betty->moo(5);

cl ass Hol stein :

public Cow {
publ i c:
void nmoo(string s);
voi d nmoo(Cow & c);

'

Polymorphism

13

Name Resolution cont.

e The compiler could not find roo(int i)

e There are three name scopes
e One for each class
* the global scope
* The scopes are nested inside each other
e« Hol st el nisin COW S scope
e Cowis in the global scope

e The compiler first looks for the innermost scope that has the
function oo, which will be Hol st el n

e [t then looks for a NDO function that takes a single integer,
but Hol st el n does not have one

Polymorphism

14

Name Resolution

e The problem can be fixed by adding
moo(int i) tothe Holstein class:

class Holstein : public Cow {
publ i c:
void moo(int i) { Cow :nmoo(I); }
void nmoo(string s);
void noo(Cow & c);

¥
 The new method will simply call the same method
in the parent class

Polymorphism

15

A Forest, Not a Tree

e No C++ class 1s the ancestor of all classes

e A void pointer can be used as a generic pointer:

Ani mal * snoopy = new Dog():
void * v = snoopy;

Dog * spi ke = dynam c_cast<Dog *>(v);

« Adynam c_cast 1s needed to safely change the
void pointer to the original type

Polymorphism

16

Private and Protected Inheritance

e Usually inheritance 1s public

* Protected inheritance changes public members in the
parent to protected in the child

e Private inheritance changes public and protected
members to private

class Pig . protected NManmal

{
publ i c:
void oink() { cout << “QG nk!”; }
/] The speak and bark nethods can only be
/| accessed by child cl asses.
}

Polymorphism 17

Virtual Destructors

e If any virtual methods are used, the destructor
should be virtual to ensure that both the parent and
child destructors are called

class Bird : public Animl {
publ i c:
virtual ~Bird() { cout << “bird killed”; }

}
class Duck : public Bird {
publ i c:
virtual void speak() { cout << “quack!”; }

virtual ~Duck() { cout << “duck killed”; }
¥

Polymorphism

18

