CS2141 — Software Development using C/C++
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Polymorphism in C+

e All polymorphism in C++ 1s done using inheritance;
there 1s no concept of an interface

e A subclass 1s declared using the name of the class, a
colon, the visibility of the parent class, and the name
of the parent class:

cl ass 2DOhj ect class Circle : public 2DObject
{ {

publ i c: publ i c:

| Nt X_pos; | nt radius;

I nt y_pos; };
¥
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A Class Hierarchy

e Consider the following class hierarchy:

class Animal {

publ i c:

virtual void speak( ) = O;
}

class Bird : public Aninmal {
publ i c:

virtual void speak( )

{ cout << “twitter”; }

b
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A Class Hierarchy cont.

class Mammal : public Animal {

publ i c:

virtual void speak( ) { cout << “can't speak”; }
void bark( ) { cout << “can't bark”; }

'

class Cat : public Mammal ({

publ i c:

voi d speak( ) { cout << “neow”; }

virtual void purr( ) { cout << “purrrrr”; }

}

class Dog : public Mammal ({

publ i c:

virtual void speak( ) { cout << “woof!”; }
void bark( ) { cout << “woof!”; }

}
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Virtual and Non-Virtual Overriding

e Overriding occurs when a child class has a method
with the exact same type signature as one of the
parent class methods

e Binding 1s the process of deciding whether to
execute the parent's version or the child's version of
a method

e The keyword vi rt ual determines whether static
binding or dynamic binding 1s used

 vi rtual only appears in the class definition
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Static Binding

 virtual 1s not used when declaring the method:

voi d bark( )
{ cout << “can't bark”; }

e The decision 1s made at compile time based on the
type of the variable:
Dog * d = new Dog( );
Mammal * m = d;
d->bark( ); [// woof!
m >bark( ); // can't bark.
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Dynamic Binding

* virtual 1s used to declare the method:

virtual void speak( )
{ cout << “woof!”; }

e The binding decision 1s made at run-time based on
the type of the object:
d- >speak( ); [// woof!
m >speak( ); [// woof!
Animal * a = d;
a->speak( ); [/ woof!
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Limitations

e The validity of calling a method 1s always static. If a
method 1s not defined 1n a class or inherited from a
parent class, 1t cannot be called:

Dog * d = new Dog( );

Animal * a = d;

d->bark( ); // woof!

a->bark( ); // Conmpile error, not allowed.

* Overriding only works with heap-resident values:

Mammal m = *d;
m speak( ); // can't speak
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More Limitations

e Child classes cannot change the type of binding

* A method that 1s declared vi rt ual 1n a parent class will
always be vi r t ual in a child class, even if vi rt ual 1is
not used 1n the child class

o Similarly, a method that is not declared vi r t ual in the
parent class can never be made vi r t ual 1n the child
class

 Any method that is called from a constructor cannot
be overridden

e Virtual methods are never inlined
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Abstract Classes

* An abstract class (or abstract base class) 1s a class that
contains pure virtual methods.

e A pure virtual method does not have a body.

e It is instead assigned a null value:

class Ani mal {
publ i c:
virtual void speak( ) = 0;

b
 Abstract base classes can only be used through inheritance

e [t 1s impossible to create an instance of
an abstract class
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Downcasting

e C++ does not perform run time type checking

e If a pointer to a parent 1s type casted to point to a
child the behavior can be unpredictable:
Animal * a = new Dog( );
Cat * ¢ = (Cat *) a;
c->purr( ); /| behavior i1s undefi ned

e Note that only the data type associated with the pointer
1s being changed - the object the pointer points at 1s not
changed in any way.
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Downcasting cont.

e The RTTI (run-time type information system)
provides a mechanism to protect against this:
Animal * a = new Dog( );
Cat * ¢ = dynamc _cast<Cat *>( a );
if( c )
cout << “Variable was a Cat” << endl;

el se
cout << “It was not a Cat” << endl:

A dynam c_cast will return a valid pointer 1if the
cast was successful, and 0 if not successful.
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Name Resolution

* The following code will ¢! ass Cow {

not compile:

publ i c:
void noo( int i );

Hol stein * betty = new Hol stein( ); };

betty->moo( 5 );

cl ass Hol stein :

public Cow {
publ i c:
void nmoo( string s );
voi d nmoo( Cow & c );

'
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Name Resolution cont.

e The compiler could not find roo( int i )

e There are three name scopes
e One for each class
* the global scope
* The scopes are nested inside each other
e« Hol st el nisin COW S scope
e Cowis in the global scope

e The compiler first looks for the innermost scope that has the
function oo, which will be Hol st el n

e [t then looks for a NDO function that takes a single integer,
but Hol st el n does not have one
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Name Resolution

e The problem can be fixed by adding
moo( int i ) tothe Holstein class:

class Holstein : public Cow {
publ i c:
void moo( int i ) { Cow :nmoo( I ); }
void nmoo( string s );
void noo( Cow & c );

¥
 The new method will simply call the same method
in the parent class
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A Forest, Not a Tree

e No C++ class 1s the ancestor of all classes

e A void pointer can be used as a generic pointer:

Ani mal * snoopy = new Dog( ):
void * v = snoopy;

Dog * spi ke = dynam c_cast<Dog *>( v );

« Adynam c_cast 1s needed to safely change the
void pointer to the original type
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Private and Protected Inheritance

e Usually inheritance 1s public

* Protected inheritance changes public members in the
parent to protected in the child

e Private inheritance changes public and protected
members to private

class Pig . protected NManmal

{
publ i c:
void oink( ) { cout << “QG nk!”; }
/] The speak and bark nethods can only be
/| accessed by child cl asses.
}
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Virtual Destructors

e If any virtual methods are used, the destructor
should be virtual to ensure that both the parent and
child destructors are called

class Bird : public Animl {
publ i c:
virtual ~Bird( ) { cout << “bird killed”; }

}
class Duck : public Bird {
publ i c:
virtual void speak( ) { cout << “quack!”; }

virtual ~Duck( ) { cout << “duck killed”; }
¥
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