
Polymorphism

CS2141 – Software Development using C/C++

Polymorphism 2

Polymorphism in C+

● All polymorphism in C++ is done using inheritance;
there is no concept of an interface

● A subclass is declared using the name of the class, a
colon, the visibility of the parent class, and the name
of the parent class:

class 2DObject
{

public:
int x_pos;
int y_pos;

};

class Circle : public 2DObject
{

public:
int radius;

};

Polymorphism 3

A Class Hierarchy

● Consider the following class hierarchy:
class Animal {
public:
virtual void speak() = 0;
};

class Bird : public Animal {
public:
virtual void speak()
{ cout << “twitter”; }
};

Polymorphism 4

A Class Hierarchy cont.

class Mammal : public Animal {
public:
virtual void speak() { cout << “can't speak”; }
void bark() { cout << “can't bark”; }
};

class Cat : public Mammal {
public:
void speak() { cout << “meow!”; }
virtual void purr() { cout << “purrrrr”; }
};

class Dog : public Mammal {
public:
virtual void speak() { cout << “woof!”; }
void bark() { cout << “woof!”; }
};

Polymorphism 5

Virtual and Non-Virtual Overriding

● Overriding occurs when a child class has a method
with the exact same type signature as one of the
parent class methods

● Binding is the process of deciding whether to
execute the parent's version or the child's version of
a method

● The keyword virtual determines whether static
binding or dynamic binding is used

● virtual only appears in the class definition

Polymorphism 6

Static Binding

● virtual is not used when declaring the method:
void bark()
{ cout << “can't bark”; }

● The decision is made at compile time based on the
type of the variable:

Dog * d = new Dog();
Mammal * m = d;
d->bark(); // woof!
m->bark(); // can't bark.

Polymorphism 7

Dynamic Binding

● virtual is used to declare the method:
virtual void speak()
{ cout << “woof!”; }

● The binding decision is made at run-time based on
the type of the object:

d->speak(); // woof!
m->speak(); // woof!
Animal * a = d;
a->speak(); // woof!

Polymorphism 8

Limitations

● The validity of calling a method is always static. If a
method is not defined in a class or inherited from a
parent class, it cannot be called:

Dog * d = new Dog();
Animal * a = d;
d->bark(); // woof!
a->bark(); // Compile error, not allowed.

● Overriding only works with heap-resident values:
Mammal m = *d;
m.speak(); // can't speak

Polymorphism 9

More Limitations

● Child classes cannot change the type of binding
● A method that is declared virtual in a parent class will

always be virtual in a child class, even if virtual is
not used in the child class

● Similarly, a method that is not declared virtual in the
parent class can never be made virtual in the child
class

● Any method that is called from a constructor cannot
be overridden

● Virtual methods are never inlined

Polymorphism 10

Abstract Classes

● An abstract class (or abstract base class) is a class that
contains pure virtual methods.

● A pure virtual method does not have a body.
● It is instead assigned a null value:

class Animal {
public:
virtual void speak() = 0;

};

● Abstract base classes can only be used through inheritance

● It is impossible to create an instance of
an abstract class

Polymorphism 11

Downcasting

● C++ does not perform run time type checking
● If a pointer to a parent is type casted to point to a

child the behavior can be unpredictable:
Animal * a = new Dog();
Cat * c = (Cat *) a;
c->purr(); // behavior is undefined

● Note that only the data type associated with the pointer
is being changed - the object the pointer points at is not
changed in any way.

Polymorphism 12

Downcasting cont.

● The RTTI (run-time type information system)
provides a mechanism to protect against this:

Animal * a = new Dog();
Cat * c = dynamic_cast<Cat *>(a);
if(c)

cout << “Variable was a Cat” << endl;
else

cout << “It was not a Cat” << endl;

● A dynamic_cast will return a valid pointer if the
cast was successful, and 0 if not successful.

Polymorphism 13

Name Resolution

● The following code will
not compile:

Holstein * betty = new Holstein();

betty->moo(5);

class Cow {
public:
void moo(int i);

};

class Holstein :
public Cow {

public:
void moo(string s);
void moo(Cow & c);

};

Polymorphism 14

Name Resolution cont.

● The compiler could not find moo(int i)
● There are three name scopes

● One for each class
● the global scope

● The scopes are nested inside each other
● Holstein is in Cow's scope

● Cow is in the global scope

● The compiler first looks for the innermost scope that has the
function moo, which will be Holstein

● It then looks for a moo function that takes a single integer,
but Holstein does not have one

Polymorphism 15

Name Resolution

● The problem can be fixed by adding
moo(int i) to the Holstein class:

class Holstein : public Cow {
public:
void moo(int i) { Cow::moo(i); }
void moo(string s);
void moo(Cow & c);

};

● The new method will simply call the same method
in the parent class

Polymorphism 16

A Forest, Not a Tree

● No C++ class is the ancestor of all classes
● A void pointer can be used as a generic pointer:

Animal * snoopy = new Dog();
void * v = snoopy;

Dog * spike = dynamic_cast<Dog *>(v);

● A dynamic_cast is needed to safely change the
void pointer to the original type

Polymorphism 17

Private and Protected Inheritance

● Usually inheritance is public
● Protected inheritance changes public members in the

parent to protected in the child
● Private inheritance changes public and protected

members to private
class Pig : protected Mammal
{

public:
void oink() { cout << “Oink!”; }
// The speak and bark methods can only be
// accessed by child classes.

};

Polymorphism 18

Virtual Destructors

● If any virtual methods are used, the destructor
should be virtual to ensure that both the parent and
child destructors are called

class Bird : public Animal {
public:
virtual ~Bird() { cout << “bird killed”; }

};

class Duck : public Bird {
public:
virtual void speak() { cout << “quack!”; }
virtual ~Duck() { cout << “duck killed”; }

};

