
Operator
Overloading

CS2141 – Software Development using C/C++

Operator Overloading 2

A Rational Class

● Consider this class for storing rational numbers:
class rational {

public:
rational(int t = 0, int b = 1)

: top(t), bottom(b) { }
rational(const rational & r)

: top(r.top), bottom(r.bottom) { }
int numerator() const { return top; }
int denominator() const { return bottom; }

private:
int top;
int bottom;

};

Operator Overloading 3

An add function

● To implement addition with two rationals, the
following could be added to the class definition:

const rational add(const rational & r) const {
int t = top * r.bottom + bottom * r.top;
int b = bottom * r.bottom;
return rational(t, b);

}

● Now addition works:
rational a(5, 6);
rational b(2, 3);
rational c = a.add(b);

Operator Overloading 4

A Better add Function

● The syntax of the add function could be better. It
would be nicer (and make sense) to write:

rational c = a + b;

● Operator overloading makes this possible:
const rational operator+(const rational & r) const
{

int t = top * r.bottom + bottom * r.top;
int b = bottom * r.bottom;
return rational(t, b);

}

Operator Overloading 5

Operator Overloading

● Operator overloading allows existing C++ operators
to work with user-defined data types.

● There are limits to this, however:
● At least one operand must be a user-defined type. It is

impossible to change the meaning of 2 + 2.
● Cannot create new operators.
● Cannot change precedence and associativity.
● Don't change the meaning of an operator - operator+

should always do something
similar to addition.

Operator Overloading 6

Overloaded Operators

+ - * / % ^

& | ~ ! && ||

++ -- << >> , <

<= == != > >= =

+= -= *= /= %= &=

|= ^= <<= >>= [] ()

-> ->* new delete

Operator Overloading 7

Functions and Methods

● Operators can generally be overloaded as member
functions or global functions.
● Unary operators can be methods with no arguments or

global functions with one argument.
● Binary operators can be methods with one argument or

global functions with two arguments.

● Operators [], (), ->, and = must be methods.

● If used as I/O operators (as they usually are), >> and
<< must be global functions.

Operator Overloading 8

Binary Arithmetic Operators

● The result should be a new value.
● The return value should be constant so it cannot be

the target of an assignment:
(a + b) = b; // This should be impossible

● Parameters are values or constant references.
● The operands should not be modified.
● Methods should be declared constant:

const rational operator/(const rational & r) const;

Operator Overloading 9

Binary Arithmetic Ops. cont.

● Subtraction as a method:
const rational operator-(const rational & r) const
{

int t = top * r.bottom - bottom * r.top;
int b = bottom * r.bottom;
return rational(t, b);

}

● Multiplication as a global function:
const rational operator*(const rational & l, const rational & r)
{

return rational(l.numerator() * r.numerator(),
l.denominator() * r.denominator());

}

Operator Overloading 10

Comparison Operators

● Work like the binary arithmetic operators, except
these return a boolean.

● Equals and less-than as methods:

bool operator==(const rational & r) const
{

return top * r.bottom == bottom * r.top;
}

bool operator<(const rational & r) const
{

return top * r.bottom < bottom * r.top;
}

Operator Overloading 11

Increment and Decrement

● Can be prefix form (++i) or postfix form (i++).
● Prefix form increments and returns the new value:

int a = 5;
int b = a++; // a = 6, b = 6

● Postfix form increments but returns the original value:

int c = a++; // a = 7, c = 6

● Prefix increment for the rational as a method:

const rational operator++() {
top = top + bottom;
return *this;

}

Operator Overloading 12

Increment and Decrement cont.

● To distinguish postfix from prefix, the postfix
version uses a dummy integer argument:

const rational operator++(int) {
rational temp = *this;
top += bottom;
return temp;

}

const rational operator--(int) {
rational temp = *this;
top -= bottom;
return temp;

}

Operator Overloading 13

Shift Operators

● Usually overloaded for input and output.
● When used for input and output, must be a global

function, not a method.
● Output operator for the rational class:

ostream & operator<<(ostream & out,
 const rational & r)
{

out << r.numerator() << “/” <<
r.denominator();
return out;

}

Operator Overloading 14

Assignment Operator

● The right operand is copied to the left operand.
● Should return a constant reference or a constant

value to prevent a second assignment.
● Assignment operator for rational as a method:

const rational & operator=(const rational & r)
{

top = r.top;
bottom = r.bottom;
return *this;

}

Operator Overloading 15

Assignment Operator cont.

● The assignment operator will be provided by the
compiler if the programmer doesn't write it
● The compiler version just copies the data members
● If the class has pointers to other values that should be

copied, the programmer should write the assignment

● Common mistakes:
● Not returning a value
● Not handling self-assignment
● Simply copying pointers rather than making copies of the

heap-resident values the object has pointers to

Operator Overloading 16

Address-of operator

● Can be overloaded to point at part of an object:
class rational {

public:
...

int * operator&() { // Returns pointer to
return ⊤ // top for some

} // mysterious reason.

private:
int top;
int bottom;

};

Operator Overloading 17

Conversion Operators

● Allows conversion from a user-defined data type to
another data type

● The return type is determined from the function or
method name

// Global function
operator double(const Rational & r)
{

return r.numerator() /
(double)r.denominator();

}

Operator Overloading 18

Subscript Operator

● Often defined for container classes:
class Storage {

public:
Storage(int s) { space = new int[s]; }
~Storage() { delete [] space; }

int & operator[](int i) { return
space[i]; }

private:
int * space;

};

Operator Overloading 19

Parenthesis Operator

● The parenthesis is the only operator that can have
any number of arguments.

● Allows an object to be used like a function:
class LessThan {

public:
LessThan(int v) : val(v) { }
bool operator()(int x) { return x < val; }
private:
int val;

}

LessThan tester(6);
if(tester(3)) ...

