
Debugging

CS2141 – Software Development using C/C++

Debugging 2

Debugging Tips

● Examine the most recent change
– Error likely in, or exposed by, code most recently added

● Developing code incrementally and testing along the
way

● Debug it now, not later
– Bug may only reoccur when more difficult, costly, or

impossible to debug

● Read before typing
– “Debug” by avoiding errors; carefully consider impact of

changes prior to making them

Debugging 3

Debugging Tips cont.

● Make the bug reproducible
– Hard to track down transient bug; construct input and

parameter settings so that bug will appear reliably

● Don't make the same mistake twice
– If mistake found and corrected, consider if same mistake

might appear elsewhere

● Write a log file
– Log records what happens in program prior to appearance

of problem

Debugging 4

Debugging Tips cont.

● Use tools
– printf() effective; gdb/ddd far faster once you're

past the learning curve

● Keep records
– If bug hard to track down, keep track of what you've tried

and what you've learned

Debugging 5

Debugging Basics

● You should be able (at some level) to express what
you expect the state of your program to be after
every statement

● Often state predicates on program state; i.e., “If
control is here, I expect the following to be true.”

Debugging 6

Example
#include <stdio.h>

int sum=0, val, num=0;
double ave;

main()
{

while (scanf("%d\n",&val) != EOF) {
 sum += val;
 num++;
 }

if (num > 0) {
 ave = sum/num;

 printf("Average is %f\n", ave);
 }
}

● sum = 0, num = 0

● sum should be the total
of inputted values, num
should be total of
inputted values

● ave should be the
floating point average
of inputted values

Debugging 7

Using gdb

● Compile source with the -g switch asserted.

– In our case, gcc -ansi -g ave.c

● Breakpoint: line in source code at which debugger
will pause execution.
– At breakpoint, can examine values of relevant components

of program state.
● break command sets a breakpoint; clear removes the

breakpoint.

● Diagnostic printf() crude, but effective way of
getting a snapshot of program state at a given point.

Debugging 8

Using gdb cont.

● Once paused at a breakpoint, use gdb print, or
display to show variable or expression values.

– display will automatically print values when execution
halts at breakpoint.

● From a breakpoint, may step or next to single
step the program.
– step stops after next source line is executed

– next similar, but executes functions without stopping.

Debugging 9

Using gdb cont.

● Find out where execution is, in terms of function
call chain, with where command; also shows
function argument values

● To make things easier, put the problematic data set
in a file named data

% a.out < data

Average is 2.000000

Debugging 10

Quickie post mortem debugging

● gdb ./a.out core

Debugging 11

A GUI for gdb: ddd

● Display values graphically
● Click on a pointer value, graphically display thing

pointed to
● Visualize complex linked data structures

Debugging 12

Analysis Tools

–Program analysis – process of automatically
analyzing the behavior of computer programs

– Ideally:

Big
Ugly
Code

Program
Analysis

Application

Line 41 writes
past end of array.

Otherwise, this code
 is perfect

Debugging 13

Program Analysis

● Static analysis performed without executing program
● Attempts to evaluate all possible executions
● Difficult

● Hard to determine all possible variable values, paths
● Computationally complex

● Static analysis tools tend to have voluminous and
speculative output

● Commonly identify potential problems that don't exist in actual
execution, “false positives”

● But, can identify problems not detectable by dynamic analysis

Debugging 14

Program Analysis cont.

● Dynamic analysis performed by executing program
● Cannot detect all bugs; only those exposed by the

execution being analyzed
● Instrumentation required for analysis

● Can change the execution
● Not prone to “false positives”

Debugging 15

Splint

● Static C program checker
● Security vulnerabilities and coding mistakes
● http://www.splint.org
●

http://www.splint.org/

Debugging 16

Splint cont.

● Problems detected
● Dereferencing a potentially null pointer
● Using potentially undefined storage or returning storage that is not

properly defined
● Type mismatches, with greater precision and flexibility than provided

by C compilers
● Memory management errors including uses of dangling references and

memory leaks
● Problematic control flow such as likely infinite loops, fall through cases

or incomplete switches
● Buffer overflow vulnerabilities
● And others

Debugging 17

Valgrind

● Debugging and profiling tool
● http://valgrind.org/

Debugging 18

Valgrind cont.

● Dynamic analysis
● Several components:

● Memcheck – memory management problems
● This is our focus

● Cachegrind – cache profiler
● For performance tweaking, find source of cache misses

● Massif – heap profiler
● Depict heap usage over time

● Helgrind – data races in multithreaded programs

Debugging 19

memcheck

● Use of uninitialized memory
● Read/write

● of memory after free
● off end of blocks allocated via malloc
● inappropriate areas of stack

● Leaks
● Mismatched use of malloc/new/new[] and free/delete/delete[]
● Etc.
● Does not bounds check on statically allocated arrays

