
Stream I/O

CS2141 – Software Development using C/C++

Stream I/O 2

iostream

● Two libraries can be used for input and output:
stdio and iostream

● The iostream library is newer and better:
● It is object oriented
● It can make use of C++ features such as references,

function overloading, and operator overloading
● It is type safe
● It is extensible - just overload the << and >> operators for

your class

Stream I/O 3

Output Streams

● An ostream converts values into sequences of
characters which are then output somewhere

● Usually the << operator is used to send values to an
ostream, but there are also other functions:
● put – Sends a single character

cout.put('c');

● write – Sends a string of characters
cout.write(buf, size);

● flush – Makes sure characters are actually written to
wherever the output is going

cout.flush();

Stream I/O 4

Output Streams cont.

● The predefined ostream object cout sends text to
the standard output device (stdout)

● The ostream object cerr, which is unbuffered,
sends text to the standard error device (stderr)

Stream I/O 5

Input Streams

● An istream reads sequences of characters from
somewhere and converts them to values

● The predefined istream object cin reads from the
standard input device (stdin)

● The >> operator is usually used to read values from
an istream. By default it skips over white space
before reading a value

● The eof() function is used to detect the end of the
input file

Stream I/O 6

Input Streams cont.

● Other functions for reading:
● getline – Read an entire line of characters

cin.getline(buffer, size);

● read – Read a string of characters
cin.read(buffer, size);

● get – Read a single character or a string
char c = cin.get();
cin.get(c);
cin.get(buffer, size);
cin.get(buffer, size, delimiter);

Stream I/O 7

Stream Errors

● There are several functions for detecting errors in an
input or output stream:
● fail – True if an error occured.

if(cin.fail()) ...

● bad – True if a fatal error occured.
if(cin.bad()) ...

● good – True if no errors have occured.
while(cin.good()) ...

Stream I/O 8

Stream File I/O

● File stream stuff is in the fstream header:
#include <fstream>
using namespace std;

● The header defines several file i/o classes:
● ofstream – Write out to a file
● ifstream – Read in from a file
● fstream – Generic reading/writing with files

Stream I/O 9

Stream File I/O cont.

● There are two ways to open a file:
● Pass the file name to the constructor:

fstream in(“mydata”);

● Use the open function:
ofstream out;
out.open(“names”);

● When opening a file, a second argument can
also be used to specify the open mode:

// Open file for appending
ofstream fout(“data”, ios::app);

Other modes include ios::trunc and ios::binary

Stream I/O 10

Stream File I/O cont.

● There are also two ways to check if a file
was opened successfully:
● The overloaded boolean conversion operator:

if(!in) { /* handle error */ }

● The fail function:
if(out.fail()) ...

● Once opened, ofstreams can be used just like
cout, and ifstreams just like cin

● Use the close function to close a file:
in.close();
out.close();

Stream I/O 11

Example (ofstream)

● An ofstream is used to write to a file:
#include <fstream>
using namespace std;
int main() {

char * filename = “outfile”;
ofstream out;
out.open(filename);
if(!out)

exit(1);
out << “Cows go moo” << endl;
out.close();
return 0;

}

Stream I/O 12

Example (ifstream)

● An ifstream is used to read from a file:
#include <fstream>
using namespace std;
int main() {

ifstream in(“infile”);
string s;
int n;
in >> s; // Read a word from in
in >> n; // Read an integer from in
in.close();
return 0;

}

Stream I/O 13

Formatted Stream Output

● Output streams have several member functions that
are used for formatting

● The most commonly used ones are:
● precision(int n)

● width(int n)

● setf(ios::flag)

● Manipulators can also be used for formatting

Stream I/O 14

precision

● Depending on the compiler, precision will set the
number of significant digits, or the the number of
digits after the decimal point
● With g++ it is significant digits
● Output is converted to exponential notation if needed

Code:
float a = 3.084, b = 26.818;
cout.precision(2);
cout << “a=” << a << “ b=” << b << endl;

Output:
“a=3.1 b=26”

Stream I/O 15

width

● width sets the minimum width of the column
● If more space is needed to print a value, the entire

value is printed
● Calling width affects only the next item that is sent

to the output stream
● Code:

int count = 53;
cout.width(10);
cout << “Count=” << count << endl;

● Output (using _ as space):
____Count=53

Stream I/O 16

setf

● setf is short for set flag

● unsetf unsets a flag

● Some useful ios flags:
● ios::fixed and ios::scientific

● If fixed is set, floating point values are not converted to
exponential notation

● If scientific is set, floating point values are always
converted to exponential notation

● Neither of these are set by default

Stream I/O 17

setf cont.

● Useful ios flags continued:
● ios::showpoint

● If set, forces the decimal point and trailing zeros to be shown for
floating point values

● If not set, a float with all zeros after the decimal point will look
like an integer

● By default, showpoint is not set

● ios::showpos
● If set, forces the + sign to be printed with positive values
● It is not set by default

Stream I/O 18

setf cont.

● Useful ios flags continued:
● ios::right

● When used with width, forces the value to be right justified
within the column

● Automatically unsets left
● Set by default

● ios::left
● When used with width, forces the value to be left justified
● Automatically unsets right
● Default is not set

Stream I/O 19

Manipulators

● Manipulators are functions that are called in an
unusual way:

#include <iomanip>
...
cout << setw(10) << setprecision(5) <<
3.14159265979 << endl;

● The setw(n)manipulator works the same as
ostream.width(n)

● Calling setprecision(n) is the same as calling
ostream.precision(n)

Stream I/O 20

Manipulators cont.

● The familiar manipulator endl is just a function:
ostream & endl(ostream & out) {

out << '\n'; // write an end-of-line
out.fflush(); // flush the buffer
return out; // return the buffer

}

● A second function is used to call it:
ostream & operator<<(ostream & out,
ostream & (*fun)(ostream &)) {

return fun(out); // execute the function
}

