CS2141 — Software Development using C/C++

The Standard
Template Library

STL Content

Data Structures — Template classes for common
structures such as lists and stacks

[terators — A generalization of a pointer used to
access containers without knowing anything about
the internal structure of the container

Function Objects — Objects that overload
oper at or () so they can be used like a function

Generic Algorithms — Functions that can work with
many different data structures

The Standard Template Library

STL Data Structures

e There are several groups of data structures:

e Sequence structures
e List or array type things

 Includes vectors, lists, and deques
e Sequence adapters

 Built on top of sequence structures

e Includes stacks and queues
e Associative structures
 Store key-value pairs

 Includes maps and sets

The Standard Template Library

Vectors

« Avector 1s aresizable array

 Provides efficient random access

e Insertions and deletions in the middle are slow

e Vector constructors:
e Vector<T> v;
e vector<T> v(Int size);

e vector<T> v(int size, T initial value);
Initializes elements toi ni ti al _val ue.

e vector<T> v(vector<T> ol dvector);

The Standard Template Library

Vector Functions

e Accessing elements:
 v[i ndex] Return element at index.
e« v.at(index) Like[], butdoesrange checking.
e« v.front() Return the first element.
 v. back() Return the last element.

e Size:
e v.size() Return number of elements.
« v.enpty() Return true if empty.

e v.resize(newsize) Setnumber of elements.

The Standard Template Library

Vector Functions cont.

e Insert and remove:

e v. push_back(val ue) Append value

« v. pop_back() Remove the last element

« v[pos] = val ue Setelement at pos to value

v.insert(iterator, value) Insertelement at
the position indicated by the 1terator

v.erase(iterator) Remove the element at the
position indicated by the iterator

v.cl ear() Remove all elements from the vector

The Standard Template Library

Example

#i ncl ude <vector> /| Header for vectors
#1 ncl ude <i ostreanp
usi ng nanespace std;

Int main() {
vector<int> v; /] A vector that stores ints
Int 1

while('cin.eof()) { // Read any nunber of ints

cin >> i:

V. push_back(1); /[l Store the ints in the vector
}
for(1 =0; | <v.size(); ++i) // Print out the

cout << v[iI] << * /'l vector one el enent

/] at a tine.
cout << endl:

The Standard Template Library

Lists and Deques

« Alist 1sadoubly linked list structure

* Optimized for insertions and deletions

e Does not allow random access (no [] operator)
A deque 1s a double-ended vector

e Operations at either end are efficient like | i st

o Subscripting 1s efficient like a vect or

. > > ——— >
List < < < <

The Standard Template Library

Sequence Adapters

 The st ack and queue both can take a sequence
structure as a template parameter

e Both use deques by default
e A vect or cannot be used with a queue

* They are adapters as they provide a specialized
interface to a more general structure

e Adapters do not provide iterators

 Intended to only be used through their interfaces

« Thereis alsoapriority queue type

The Standard Template Library

Associative Structures

* A map stores key-value pairs

e Map operations use a pai r data type
e pair.first returns the key

* pai r. second returns the value

A set 1s like a map, but only stores keys

e Both are implemented as binary trees, so operations
are very efficient

e Amulti _mapornul ti _set allow keys to appear
more than once 1n the structure

The Standard Template Library

10

lterators

e An iterator 1s a generic way of accessing a data
structure without knowing anything about how the
structure works

e Iterators are used a lot like pointers:

* They can be dereferenced with the * operator

e They can be incremented and decremented

e They can be subscripted (sometimes)

e Pointers are iterators

The Standard Template Library 11

lterators cont.

e A pair of 1terators refers to a range of locations:

I nt noo[30] ;
Mmoo moo+1 moo+2 moo +28 moo+29 moo+30

Int * begin = noo;
Int * end = noo + 30;

e The begin iterator refers to the first element in the
data structure.

 The end 1terator refers to after the last element.

The Standard Template Library 12

lterators cont.

e Iterators might access
locations that are not
necessarily contiguous
In memory

e Iterators can be used
without knowing
anything about the
underlying data
structure

The Standard Template Library 13

lterators cont.

* begi n() and end() are used to get iterators from
an STL data structure

 begi n() returns an 1terator for the first element

« end() returns an iterator for after the last element

vector<int> v;

I nt sum = O;

vector<int>::iterator start = v.begin();
vector<int>::iterator stop = v.end();
for(; start != stop; ++start)

sum += *start;

The Standard Template Library 14

lterators cont.

e There are two major types of iterators:

e Bi-directional

e Can increment and decrement, but no random access

e Returned by lists, sets, and maps
e Random access:
* Can do whatever - increment, decrement, subscript...

» Returned by vectors, strings, and deques

e Some generic algorithms require random access
iterators and can't be used with list, sets, or maps

The Standard Template Library

15

Function Objects

* Any object overloading the parenthesis operator can
be used as a function

cl ass Bi gger {
publ i c:
Bigger(int v =0) : val(v) { }
bool operator()(int test)
{ return test > val; }

private:
I nt val;

'

Bi gger byte(8);
1 f(byte(3))...

The Standard Template Library 16

Generic Algorithms

 STL generic algorithms are based on templates,
iterators, and function objects, so they can be used
with a wide variety of data structures

e One algorithm 1s find, which takes a start iterator, an
end iterator, and a value to look for:

| nt nuns[100] ;

Int * pos = find(nunms, nuns + 100, 45);
1 f(pos !'= (nuns + 100))
cout << “Found 45 in the array” << endl;

el se
cout << “Couldn't find 45" << endl;

The Standard Template Library 17

Generic Algorithms cont.

e Generic algorithms are just template functions:

tenplate <class iterator, class T>
Iterator find(iterator first, iterator last, T

& val)

{
while(first I'=last && *first !'= val)
++f 1 rst;

return first;

}
e Some other algorithms:

e count, copy, sort, count if, replace,
generate, equal, fill, random shuffle, search,
reverse, 1 nner_product, for_each, 1 ncludes,

max The Standard Template Library 18

