
The Standard
Template Library

CS2141 – Software Development using C/C++

The Standard Template Library 2

STL Content

● Data Structures – Template classes for common
structures such as lists and stacks

● Iterators – A generalization of a pointer used to
access containers without knowing anything about
the internal structure of the container

● Function Objects – Objects that overload
operator() so they can be used like a function

● Generic Algorithms – Functions that can work with
many different data structures

The Standard Template Library 3

STL Data Structures

● There are several groups of data structures:
● Sequence structures

● List or array type things
● Includes vectors, lists, and deques

● Sequence adapters
● Built on top of sequence structures
● Includes stacks and queues

● Associative structures
● Store key-value pairs
● Includes maps and sets

The Standard Template Library 4

Vectors

● A vector is a resizable array
● Provides efficient random access
● Insertions and deletions in the middle are slow

● Vector constructors:
● vector<T> v;

● vector<T> v(int size);

● vector<T> v(int size, T initial_value);
Initializes elements to initial_value.

● vector<T> v(vector<T> oldvector);

The Standard Template Library 5

Vector Functions

● Accessing elements:
● v[index] Return element at index.
● v.at(index) Like [], but does range checking.
● v.front() Return the first element.
● v.back() Return the last element.

● Size:
● v.size() Return number of elements.
● v.empty() Return true if empty.
● v.resize(newsize) Set number of elements.

The Standard Template Library 6

Vector Functions cont.

● Insert and remove:
● v.push_back(value) Append value
● v.pop_back() Remove the last element
● v[pos] = value Set element at pos to value
● v.insert(iterator, value) Insert element at

the position indicated by the iterator
● v.erase(iterator) Remove the element at the

position indicated by the iterator
● v.clear() Remove all elements from the vector

The Standard Template Library 7

Example

#include <vector> // Header for vectors
#include <iostream>
using namespace std;

int main() {
vector<int> v; // A vector that stores ints
int i;

while(!cin.eof()) { // Read any number of ints
cin >> i;
v.push_back(i); // Store the ints in the vector

}

for(i = 0; i < v.size(); ++i) // Print out the
cout << v[i] << “ “; // vector one element

// at a time.
cout << endl;

}

The Standard Template Library 8

Lists and Deques

● A list is a doubly linked list structure
● Optimized for insertions and deletions
● Does not allow random access (no [] operator)

● A deque is a double-ended vector
● Operations at either end are efficient like list

● Subscripting is efficient like a vector

The Standard Template Library 9

Sequence Adapters

● The stack and queue both can take a sequence
structure as a template parameter
● Both use deques by default
● A vector cannot be used with a queue

● They are adapters as they provide a specialized
interface to a more general structure
● Adapters do not provide iterators
● Intended to only be used through their interfaces

● There is also a priority_queue type

The Standard Template Library 10

Associative Structures

● A map stores key-value pairs
● Map operations use a pair data type

● pair.first returns the key
● pair.second returns the value

● A set is like a map, but only stores keys

● Both are implemented as binary trees, so operations
are very efficient

● A multi_map or multi_set allow keys to appear
more than once in the structure

The Standard Template Library 11

Iterators

● An iterator is a generic way of accessing a data
structure without knowing anything about how the
structure works

● Iterators are used a lot like pointers:
● They can be dereferenced with the * operator
● They can be incremented and decremented
● They can be subscripted (sometimes)

● Pointers are iterators

The Standard Template Library 12

Iterators cont.

● A pair of iterators refers to a range of locations:
int moo[30];

int * begin = moo;
int * end = moo + 30;

● The begin iterator refers to the first element in the
data structure.

● The end iterator refers to after the last element.

The Standard Template Library 13

Iterators cont.

● Iterators might access
locations that are not
necessarily contiguous
in memory

● Iterators can be used
without knowing
anything about the
underlying data
structure

The Standard Template Library 14

Iterators cont.

● begin() and end() are used to get iterators from
an STL data structure
● begin() returns an iterator for the first element
● end() returns an iterator for after the last element

vector<int> v;
...
int sum = 0;
vector<int>::iterator start = v.begin();
vector<int>::iterator stop = v.end();
for(; start != stop; ++start)
sum += *start;

The Standard Template Library 15

Iterators cont.

● There are two major types of iterators:
● Bi-directional

● Can increment and decrement, but no random access
● Returned by lists, sets, and maps

● Random access:
● Can do whatever - increment, decrement, subscript...
● Returned by vectors, strings, and deques

● Some generic algorithms require random access
iterators and can't be used with list, sets, or maps

The Standard Template Library 16

Function Objects

● Any object overloading the parenthesis operator can
be used as a function

class Bigger {
public:
Bigger(int v = 0) : val(v) { }
bool operator()(int test)
{ return test > val; }

private:
int val;

};

Bigger byte(8);
if(byte(3))...

The Standard Template Library 17

Generic Algorithms

● STL generic algorithms are based on templates,
iterators, and function objects, so they can be used
with a wide variety of data structures

● One algorithm is find, which takes a start iterator, an
end iterator, and a value to look for:

int nums[100];
...
int * pos = find(nums, nums + 100, 45);
if(pos != (nums + 100))

cout << “Found 45 in the array” << endl;
else

cout << “Couldn't find 45” << endl;

The Standard Template Library 18

Generic Algorithms cont.

● Generic algorithms are just template functions:
template <class iterator, class T>
iterator find(iterator first, iterator last, T
& val)
{

while(first != last && *first != val)
++first;
return first;

}

● Some other algorithms:
● count, copy, sort, count_if, replace,
generate, equal, fill, random_shuffle, search,
reverse, inner_product, for_each, includes,
max

