CS2141 — Software Development using C/C++

UML

Introduction

« UML = Unified Modeling Language
e It 1s a standardized visual modeling language

— Primarily intended for modeling software systems

— Also used for business modeling

e UML evolved from earlier competing modeling
languages

— Based on the best parts of those earlier methods

— Has continued to evolve since its creation

e UML i1s NOT a visual programming language

UML

Architectural Views of UML

« UML 1s centered around a number of different types
of diagrams, each modeling the system from a
different perspective

— Use case diagrams model the functionality of the system
from the users' perspective

— Structural diagrams model the static structure of a system

e Class diagrams show the overall structure

e Object diagrams show the structure at a particular time

UML 3

Architectural View of UML cont.

 Interaction diagrams model the interaction of objects
as they perform some operation

e Sequence diagrams model the sequences of messages that are
sent between objects to carry out some operation

e Collaboration diagrams show the roles objects play in carrying
out some operation

— Behavioral diagrams model the behavior of objects

* A state diagram models the states an object can be 1n and the
stimuli that cause 1t to change states

o Activity diagrams show how the behaviors of objects involved
in some operation depend on each other

UML 4

Architectural Views of UML cont.

e Physical diagrams show how the parts of a system
are organized 1n the real world.

e A component diagram shows the organization of the parts of
the system into packages.

» Deployment diagrams display the physical locations of the
components of the system.

UML

Why use UML?

e Communicate information about a system

— Diagrams can be understood by non-programmers
— Models can serve as a blueprint for a system

— Models can help document a system

* Even if the diagram itself is ultimately discarded, the
act of creating 1t 1s useful since 1t helps you to
understand whatever it 1s you're modeling

UML 6

Use Case Diagrams

e A use case diagram models the users' view of the
system

— Describes what the system does, not how 1t does it

— Shows how the user interacts with the system
e Useful for:

— Determining features
— Communicating with clients

— Generating testcases

UML

Use Case Diagrams cont.

e Basic Vocabulary

— Actor: A person or thing involved in some task
— Use case: Something the user does with the system

— Communication: Lines linking actors and use cases

Use Case -w
B Purchase Actor
Actor % Beve rage % «

Thirsty Vending
Person Machine
Communication

UML

Example

e Use case diagram for a text editor:

Load File
Q s

Save File
A <

Check
Spelling

!

User

Edit Text

Y/

UML

Use Case Diagrams cont.

 More vocabulary:

— Include - Like a procedure call

- Extend - Like a procedure that 1s called sometimes
depending on some condition

— Generalizations - A specialization of some case

— Boundary box - Group use cases together

e Examples on next slide...

UML

10

Example 2

e Another use case diagram for a text editor:

Boundary
Boxes

\ Vv

Version 2
Version 1
Load File ~ <<include>>

Choose File

Save File = “<<include>> \

» Edit HTML
t Code
\

<extend> ~Add Word To
Dictionary

4

Extend Case —/

UML

Include Case

Generalization

11

Class Diagrams

e A class diagram models the classes 1n a system and

how they are related

e (Classes are modeled
for:

— The class name
— Attributes - the data

| as boxes with compartments

ClassName | «=— Name

+datal .
members of the class | 4.1 a0 <4— Attributes
— Operations - the +funcl() — Operations

methods of the class

+func2()

UML 12

Class Diagrams cont.

e Compartments (except the name) can be omitted 1f

not needed for the purpose of the diagram.

e Characters placed 1n front of class members indicate

visibility:

- + Public

- # Protected
— - Private

- ~ Package

Public Data—,

Private Data—> |

Public Functions-<:

UML

ClassName

+datal
—data2

+funcl()
+func2()

13

Class Diagrams cont.

e Other class modeling details:

— The order of the compartments 1s always the same: class
name, attributes, and operations

— Members are listed 1n order of decreasing visibility, from
public down to private

— Functions for getting and setting attributes are often
omitted from the diagram

— Abstract classes are represented by having their class
name 1n 1talics

— Pure virtual functions also have their names 1n italics

UML 14

Class Diagrams cont.

e Many different Class1 h_ Association

relationships:

— Associations - ArrTows
indicate the direction of the Class3
relation. Class] and Class2

know about each other, and
Class2 knows about Class3,

but Class3 is not aware of Generalization

anyone else. Child1 \
— Generalization - Indicates Parent <H F——

inheritance - the Parent 1s a

generalization of the Childl Child2

and Child2.

UML

Class Diagrams cont.

e Composition - A 1s composed
of Bs, like a building 1s
composed of rooms. Usually
the lifetime of B 1s strongly
tied to the lifetime of A.

- Aggregation - Weaker form of
composition. C has a
collection of Ds, like a
shopping list has a collection of
items.

— Don't worry too much about
getting the diamonds right - if
in doubt, don't include them.

UML

Composition

16

* Multiplicity indicates the

Class Diagrams cont.

number of instances that can be ¢
on either end of a relationship.
- 0..1 Zero or one 1nstance ﬂi..S
- 0..* Any number '
-1 Exactly one instance A
- 1..* Atleast one
- n.m General form -
1
B D

UML

17

Example

e Class diagram for a text editor:

v

1

SpellChecker

EditorGui

TextArea

-load: Button

-dictionary: vector<string>

—-save: Button

+checkSpelling(text:string): void
+loadDictionary(filename:string): void
—addToDictionary(word:string): void
+saveDictionary(filename:string): void

-spellCheck: Button
—quit: Button
-text: TextArea

-beforeCursor: string
-afterCursor: string

+keyPressed(key:char)
+getText(): string

+loadFie()

1

1

SpellCheckGui

-ignore: Button
-replace: Button
—-add: Button

—curWord: string

+getResponse(string): int

+saveFile()

1

FileChooserGui

—currentDir: string

+getFilename(): string

UML

18

Anchor

+object: Object™®
+position: Point

Example

Object

Stick

+a: Object™
+b: Object™

+length: double

+mass: double
+theta: double
+force: Point
+velocity: Point
+position: Point
+HastPosition: Point

String

+a: Object™
+b: Object™

+length: double

UML

Spring

Spacer

+a: Object™
+b: Object™
+length: double

+a: Object™
+b: Object™
+ength: double

19

Object Diagrams

* An object diagram shows instances of classes and
their relationships at a particular point in time

e Useful for explaining complex relationships

e Consider this small class diagram:

UML

20

Class Diagrams cont.

e An object diagram could show how instances of
those classes are used to represent a house:

guestBedroom:Room

house:Building

bathroom:Room

masterBedroom:Room

kitchen:Room

closet:Room

masterBath:Room

pantry:Room

UML

21

Sequence Diagrams

e A sequence diagram details how an operation 1s
carried out

— Shows what messages are from one object to another and
when they are sent

— Organized vertically by time - time flows down
— Horizontal axis shows classes or class roles

— Usually an individual diagram shows the sequence of
events for some particular feature rather than for the
whole program

UML 22

Sequence Diagrams cont.

e Diagram vocabulary:

— Class Identification - a
box with underlined name
in form of InstanceName :
ClassName.

— Class Lifeline - a dotted
line indicating the object
exIsts.

— Termination - An X at the
end of the lifeline
indicating the object was
destroyed.

UML

ClassName : InstanceName

f

Class
Identification

Class
Lifeline

Termination

S

X______________

23

Sequence Diagrams cont.

e Activation - A box over the
lifeline indicates that class
or object has control.

— Simple message - A line
with a line arrow indicates

a message or function call.

— Synchronous message -
Indicated by a line with a
filled arrow. A dashed
line with an arrow 1n
opposite direction
indicates a return.

UML

lfActivation—/'

€ - -—-~--- 1

Synchronous
Message

24

Sequence Diagrams cont.

o Asynchronous message - A
line with a half arrow
indicates a message that
does not stop processing in
the sender

— Call to self - An object
calling 1itself 1s indicated
by a message and a sub-
activation box

— Usually messages are
labeled

UML

b : Bee

C . Sea

!

Asynchronous
Message

><________

25

e Sequence diagram for text editor spel

‘EditorGui

Example

| checking:

‘TextArea

:SpellChecker

:SpellCheckGui

'Spell Check' pressed I
>q-| getText() >

UML

getRespnnse(word)

26

Collaboration Diagrams

e A collaboration diagram models the flow of
messages between objects

e Vocabulary 1s similar to sequence diagrams

— Classes are represented by boxes with names 1n the form
of instance/role name : class name. Instance names are
underlined

— Message types are the same as 1n sequence diagrams
— Messages have a sequence number

— Time 1s indicated by sequence numbers rather than the
arrangement of the diagram

UML 27

Example

e Collaboration diagram for text editor spell checking:

ll 'Spell Check’ preSSEd/ Seq uence Number

‘EditorGui

1.1 getText()

>

ll.Z checkSpelling(text)

:SpellChecker

1.2.1 getResponse(word)

‘TextArea

1.2.2 getResponse(word)

UML

Bl :SpellCheckGui

28

Statechart Diagrams

» A statechart diagram shows the states an object can
be 1n and the transitions between states

- Intermediate States
Initial State /)
J 'Save File' pressed
.7 4’ Editing Text ! l Saving File J

, * File Saved
'Ot Transitions
Quit' pressed Check
Spelling' ! ile'
peliing Spellcheck Load File' pressed
pressed
& Complete
@ } File Loaded
') Checl.qng Loading File
) Spelling
Final State

UML

29

Activity Diagrams

e An activity diagram 1s like a flowchart

e Shows the logic of some operation

— States are actions

— Can have multiple objects. The diagram 1s divided 1nto
swimlanes, one lane for each object

— Can have branches like a flowchart

 Drawn as diamonds

e Need guard expressions to label the transitions out

— Can have forks and joins

UML

30

Exa

mple

e Activity diagram for a vending machine:

Swimlanes ==

Thirsty Person

Insert Money

Vending Machine

Accept Money

Select Beverage

with gu
expres:

\

everage Money

Take Take Extra
Beverage Money

\ Return
[lSDens Return Extra) Money
B

Y

BranchLm:I

| Validate Total
Pl
Money /
Fork [enough] [not enough]

lions

UML

31

Component and Deployment

Diagrams

e A component diagram shows the relationships
between the major parts of a system

Component

Class or Object

Name : Type

Name

Name

|
—
—
L

|

Package

Dependency

32

Component and Deployment
Diagrams cont.

e A deployment diagram shows where the
components of a system are physically located

e In addition to the vocabulary from component
diagrams, a deployment diagram uses nodes and
communication relationships:

Node -‘ Node-‘

Server Client PC

Database g Server g Webbrowser
A

TCP/IP

Communication Relationship -4

UML

33

