
C++ vs. C

CS2141 – Software Development using C/C++

C++ vs. C 2

Differences from C++

● No classes, no operator overloading, no templates,
and no references

● Local variables must all be declared at the start of a
function before any other code

● Stdio rather than iostream
● Malloc and free instead of new and delete
● Older compilers only support /* ... */ style

comments (// is okay with newer ones)

C++ vs. C 3

stdio

● stdio is the widely known and available C
input/output library

● Not object-oriented, nor as extendable or adaptable
as iostream
● Uses a fixed set of formatting directives
● Cannot be extended to work with user-defined types

● There is no type checking, so using the wrong
formatting directive can cause problems

● To use stdio, include <stdio.h>

C++ vs. C 4

Print to terminal

● The function printf prints text to stdout:
printf(“Cows go moo.\n”);
printf(“Pigs go oink.\n”);

● Conversion characters are used to do formatting
when printing values:

int a = 3;
double d = 2.8;
printf(“i is %d\n”, i); // %d for ints
printf(“d is %lf\n”, d); // %lf for doubles
char * s = “Quack quack!”;
printf(“%s\n”, s); // %s for strings

C++ vs. C 5

Print to terminal cont.

● Common conversion characters:
%d integer decimal value
%o integer printed as octal
%x integer printed as hex
%c integer printed as a character
%u unsigned integer decimal
%f floating point value
%g floating point value exponential notation
%e same as %g but shorter
%s null terminated string
%% percent sign

● Try 'man 3 printf' for more information

C++ vs. C 6

Read from terminal

● The scanf function formats values as they are read
in from stdin
● Uses same conversion characters as printf
● Arguments must be pointers rather than values

int i;
float j;
scanf(“%d %f”, &i, &f);

● fgets can be used to read an entire line of text:
char buffer[200];
fgets(buffer, 200, stdin);

C++ vs. C 7

File I/O

● Files are opened using the fopen function
● Takes a filename and a mode. Some modes are:

“r” Open the file for reading
“w” Open the file for writing

● Returns a FILE * pointer, or NULL if unsuccessful

● Use fclose to close a file
FILE * f = fopen(“secretplans.dat”, “r”);
if(f == NULL)

printf(“Could not open file\n”);
else

fclose(f);

C++ vs. C 8

File I/O cont.

● fprintf and fscanf work like printf and scanf,
but have a file pointer parameter:

int i;
int codes[5];

FILE * f = fopen(“codes.ts”, “r”);
for(i = 0; i < 5; ++i)
fscanf(f, “%d”, &codes[i]);
fclose(f);

f = fopen(“spyreport.txt”, “a”); // “a” = append
for(i = 0; i < 5; ++i)
fprintf(f, “%d\n”, codes[i]);
fclose(f);

C++ vs. C 9

Structures

● Structures are like class definitions, but with only
public data fields:

struct Fish {
float pos[2]; // x-y position of the fish
int age; // age of the fish
char * name; // name of the fish

};

Fish bubbles;
bubbles.pos[0] = 1.2;
bubbles.pos[1] = 3.6;
bubbles.age = 5;
bubbles.name = “Bubbles”;

C++ vs. C 10

Unions

● A union is similar to a struct, but defines fields
that share the same memory location

union Node { // Can hold...
int i; // an int OR
double d; // a double OR
struct Fish * f; // a pointer to a Fish

};

● Only one field can be used at a time
● In C++ this is replaced by polymorphism

C++ vs. C 11

Memory management

● In C, the malloc and free functions are used to
allocate and free heap-resident memory
● malloc takes the number of bytes to allocate
● free takes a pointer

// Allocate an array of Fish
struct Fish * tank;
int fishCount = 50;
tank = (struct Fish *)malloc(

sizeof(struct Fish) * fishCount);

swim(tank); // Let the fish swim around

free(tank);

