CS2141 — Software Development using C/C++

C++vs. C

Differences from C++

No classes, no operator overloading, no templates,
and no references

Local variables must all be declared at the start of a
function before any other code

Stdio rather than 10stream
Malloc and free instead of new and delete

Older compilers only support / * ... */ style
comments (/ / 1s okay with newer ones)

C++vs. C

stdio

st di o 1s the widely known and available C
input/output library

Not object-oriented, nor as extendable or adaptable
as i ostream

» Uses a fixed set of formatting directives

e Cannot be extended to work with user-defined types

There 1s no type checking, so using the wrong
formatting directive can cause problems

To use stdio, include <st di 0. h>

C++vs. C

Print to terminal

e The function pri nt f prints text to st dout :

printf(°
printf(°

Cows go noo.\n”);
Pigs go oink.\n”);

e Conversion characters are used to do formatting
when printing values:

Int a = 3;

doubl e d
printf(“
printf(“
char * s
printf(“

= 2.8,

I 1s %\n”, 1); [/ % for ints
dis %f\n”, d); // %f for doubles
= “Quack quack!”;

%\n", s); /] % for strings

C++vs. C

Print to terminal cont.

e Common conversion characters:

% | nt eger deci mal val ue

%0 | nteger printed as oct al

WX | Nt eger printed as hex

% | nteger printed as a character

% unsi gned 1 nt eger deci nal

% floating point val ue

% floating point val ue exponential notation
%e same as % but shorter

¥s null termnated string

%o percent sign

e Try 'man 3 printf'for more information

C++vs. C

Read from terminal

 The scanf function formats values as they are read
in from st di n

e Uses same conversion characters as pri nt f

e Arguments must be pointers rather than values
int i1;
float j,;
scanf(“% %", &, &);

« f get s can be used to read an entire line of text:

char buffer[200];
fgets(buffer, 200, stdin);

C++vs. C

File 1/0

 Files are opened using the f open function

e Takes a filename and a mode. Some modes are:
“r” Open the file for reading

“W' Open the file for writing

 Returns a FI LE * pointer, or NULL 1f unsuccessful

e Usefcl ose to close a file

FILE * f = fopen(“secretplans.dat”, “r”);
1f(f == NULL)

printf(“Could not open file\n”);
el se

fclose(f);

C++vs. C

File I/0 cont.

e fprintf and fscanf work like pri ntf and scanf,
but have a file pointer parameter:

Int 1
| nt codes| 5] ;

FILE * f = fopen(“codes.ts”, “r”);
for(1 =0; I <5; ++i)

fscanf(f, “%l”, &codes[i]);
fclose(f);

f = fopen(“spyreport.txt”, “a”); [/ “a” = append
for(1 =0; 1 <5; ++i)

fprintf(f, “%\n”, codes[i]);

fclose(f);

C++vs. C

Structures

 Structures are like class definitions, but with only
public data fields:

struct Fish {
float pos[2]; // x-y position of the fish

| nt age; /] age of the fish
char * nane: [/ nane of the fish
i
Fi sh bubbl es;

bubbl es. pos| 0]
bubbl es. pos[1]
bubbl es. age = 5;

bubbl es. nane = " Bubbl es”;

1.2
3. 6;

C++vs. C

Unions

A uni on 1s similar to a st r uct , but defines fields
that share the same memory location

uni on Node { [/ Can hol d...
Int 1 [/ an I nt OR
doubl e d: [/ a double OR

struct Fish * f; // a pointer to a Fish

¥
e Only one field can be used at a time

e In C++ this 1s replaced by polymorphism

C++vs. C 10

Memory management

e In C, the mal | oc and f r ee functions are used to
allocate and free heap-resident memory

« mal | oc takes the number of bytes to allocate

 free takes a pointer

/[l Allocate an array of Fish
struct Fish * tank;
I nt fishCount = 50;
tank = (struct Fish *)nmall oc(
si zeof (struct Fish) * fishCount);

swn(tank); // Let the fish sw m around
free(tank);

C++vs. C

