
Libraries

CS2141 – Software Development using C/C++

Libraries

Compilation and linking

/* p1.c */
int x;
int z;
main()
{

x=0; z=0;
printf("f(3)=%d x=%d z=%d\n",f(3),x,z);

}

● Code for int f(int) not available yet, nor printf()

● x and z available to other object modules

● Compiled module must reflect these facts

Libraries

Compilation sequence

Source
Code

Compiler
Object
Module

Source
Code

Object
Module

Load
Module

Compiler Archiver

Archiver

Library

● Compiler: Converts program from source file to machine
language, produces an object module (which cannot be executed)

● Linker: Produces a load module which is ready to be executed

● Operating system will create a process from the load module

Libraries

Symbol table

● Object file may contain unresolved global symbols

– Defined: variables, functions defined within object file, can be
referenced within other object files

– Undefined: variables, functions used within this object file, defined
elsewhere

● Linker combines object files and resolves symbols while
creating executable

– Object file contains symbol table

– Symbol table will contain information needed to resolve symbols

– Linker uses information from the symbol table

● Executable will contain no unresolved symbols

Libraries

Symbol table cont.

● nm can be used to display symbol table

– Uppercase is used for global symbols

– Lowercase is used for local symbols

– T code section

– U is undefined

– Look at man nm for other symbol types

Libraries

Object Modules

● Many different formats (a.out, ELF, COFF, etc.)

● Header Section - Sizes required to parse object module and create
program

● Machine Code- Generated machine code (also called text)

● Initialized Data - Initialized global and static data (doesn't go on stack)

● Symbol Table - External symbols

● Undefined - Used in this module, defined elsewhere
● Defined - Defined in this module, may be undefined in another

module
● Relocation Information - Record of places where symbols must be

relocated

Libraries

Libraries

Linking

● Object module will (usually) assume starting address is zero

● Linker combines several object modules

● Text sections combined, data sections combined, ...
● Combined modules cannot all start at zero

● Cannot have unresolved references in load module

● Two tasks then:

● Relocate modules (account for starting address that results
from combining modules)

● Link modules (resolve undefined external references)

Libraries

Relocation

Libraries

Resolve all symbols

Libraries

Create a Load Module

1) Create empty load module and global symbol table

2) Get next object module or library name

3) Object module:

● Insert code and data, remember where
● Undefined external references:

● Already defined in global symbol table, write value in just loaded object
module

● Not yet defined, note that links must be fixed when symbol defined
● Defined external references:

● Fix up all previous references (to this symbol) noted in global symbol
table

Libraries

Create Load Module cont.

4) Library:

● Find each undefined external reference in global symbol table
● See if symbol defined in library
● If so, load it per step (3)

5) Back to step 2

Libraries

Process Creation

Libraries

Static Linking

● Library routines combined into binary program image

● Creates large load modules

● Same library may be contained in multiple images throughout file
system

● Once load module is created, it is impervious to changes in
referenced library

● New versions require recompilation
● Does not depend on existence of (specific version of) library

on system
● gcc -static ...

Libraries

Dynamic Linking

● Stub included in binary program image for each library-
routine reference

● Stub is code to locate memory-resident routine or load it if
library routine not present

● Stub replaces itself with address of routine and executes
routine

● Will use most recent version of library routine

● Higher overhead during use; faster startup than statically
linked

● Allows same code to be shared by multiple processes

Libraries

Static libraries

● Static libraries created with ar. (See manual page.)
Commonly used options:
● c create a new library

● q add the named file to the end of the archive

● r replace a named archive/library member

● t print a table of archive contents

● ranlib run on library to create index of each
symbol defined by a relocatable library

Libraries

Example: Working with static
libraries

gcc -c libFunc.c

ar -cq libMyLib.a libFunc.o

ranlib libMyLib.a

gcc myProg -lmyLib

gcc -o myProg myProg.c -L. -lMyLib

ar -q libMyLib.a anotherFunc.o

ranlib libMyLib.a

Libraries

Example: Working with dynamic
libraries

● Must compile position independent code;
● gcc -fPIC -c myFunc.c

● Use ld to create library;

● gcc -shared *.o -o libmyUtil.so (ld via gcc)

● ldd returns shared libraries used by an object
module

Libraries

Useful tools

● file – gives information about file (executable,
relocatable...)

● nm – list symbols from object file or library

