
VERSION CONTROL
CS2141 - Software Development using C/C++



Version Control

System for managing changes to (especially plain text) files

Associates changes made to a group of files with a “revision”

Applies timestamps, other information, to revision

Supports retrieving any previous (or current) version

Supports many users making changes to files simultaneously



Basics

Software manages a database of changes

User “commits” changes to the database

User can “revert” changes to a past version, instead

Can generally “diff” versions to see what changed

Authorized users can “check out” a complete copy of a revision



History: SCCS

Source Code Control System

Written at Bell Labs in 1972

Uses a technique called “interleaved deltas”

Store only changed portions of the file

File format still used internally by systems like BitKeeper



History: RCS

Revision Control System

Written in the ‘80s at Purdue

Designed as a free, more evolved alternative to SCCS

Only supports working with single files

Does not use a central repository

Still occasionally used for server admin scripts



CVS

Concurrent Versions System

Developed as a series of scripts to add project support to RCS

Scripts published in ’86, Version 1.0 submitted to FSF in 1990

Introduced a formal notion of “branching” to version control

Maintains a central repository to which changes are committed

Very, very widely used, though this is changing



Branching

Duplicate an object (file, directory, etc) so modifications can 
happen in parallel

Copies called “child branches”, copied objects called “parents”

Upper-most branch called “trunk”

Changes are generally “merged” back into parent later

Branches not intended for merging called forks



Subversion

Begun in 2000 to be a mostly-compatible successor to CVS

Supports renaming files, etc with full revision history

Native, efficient support for binary files

Multiple access protocols: filesystem, WebDAV, and svn

Built in support in Eclipse, XCode, Visual Studio

Available on lab machines



Multi-User Version Control
Allows programmers to collaborate without emailing files

Traditionally, a single server maintains the “official” copy

Developers can check out copies, make changes, commit them

Revisions are tagged with information on who did the commit

Changes propagated to other users via update mechanism

Support conflict resolution between merges (what happens if two 
users change the same thing)



Distributed Version Control

All users maintain repositories with version history

Central repository not needed, though often used

No need for network access & operations are faster

Can commit to local repo without committing to central repo

Access control, security can be harder to attain

Bazaar, Mercurial, and Git are popular examples


