VERSION C()NTR()L

| Ll St e D oy e T G A O |

*x Kk Kk Kk * % Kk k&

Version Control

*& System for managing changes to (especially plain text) files
*k Associates changes made to a group of files with a “revision”
& Applies timestamps, other information, to revision

*t Supports retrieving any previous (or current) version

“¢ Supports many users making changes to files simultaneously

Basics

*t Software manages a database of changes

* User “commits™ changes to the database

* User can “revert” changes to a past version, instead
* Can generally “difl” versions to see what changed

“¢ Authorized users can “check out” a complete copy of a revision

History: SCCS

*& Source Code Control System

& Written at Bell Labs in 1972

*k Uses a technique called “interleaved deltas™
*& Store only changed portions of the file

“¢ File format stll used internally by systems like BitKeeper

History: RCS

* Revision Control System

& Written in the “80s at Purdue

*t Designed as a free, more evolved alternative to SCCS
“¢ Only supports working with siﬁgle files

¢ Does not use a central repository

* Still occasionally used for server admin scripts

CVS

*t Concurrent Versions System

& Developed as a series of scripts to add project support to RGS
*& Scripts published in “86, Version 1.0 submitted to FSF in 1990
K Introduced a formal notion of ‘“branching” to version control

“t Maintains a central repository to which changes are committed

*& Very, very widely used, though this is changing

Branching

“ Duplicate an object (file, directory, etc) so modifications can
happen in parallel

*& Copies called “child branches”, copied objects called “parents™
K Upper—m(jst branch called “trunk”
*t Changes are generally “merged” back into parent later

“* Branches not intended for merging called forks

Subversion

¢ Begun in 2000 to be a mostly-compatible successor to CVS
“¢ Supports renaming files, etc with full revision history

* Natve, efficient support for binary files

& Muluple aécess protocols: ﬁleéystem, WebDAYV, and svn

*¢ Built in support in Eclipse, XCode, Visual Studio

¢ Available on lab machines

Mula-User Version Control

“¢ Allows programmers to collaborate without emailing files

*¢ Traditionally, a single server maintains the “official” copy

*t Developers can check out copies, make Changes, commit them
% Revisions are tagged with information on who did the commit
*k Changes propagated to other users via update mechanism

“& Support conflict resolution between merges (what happens if two
users change the same thing)

Distributed Version Control

*¢ All users maintain repositories with version history

“¢ Central repository not needed, though often used

*t No need for network access & operations are faster

“¢ Can commit to local repo without committing to central repo
*& Access control, security can be harder to attain

* Bazaar, Mercurial, and Git are popular examples

