Multi-Way Search Tree

- A multi-way search tree is an ordered tree such that
 - Each internal node has at least two children and stores \(d - 1 \) key-element items \((k_i, o_i)\), where \(d \) is the number of children
 - For a node with children \(v_1, v_2, \ldots, v_d \) storing keys \(k_1, k_2, \ldots, k_{d-1} \)
 - keys in the subtree of \(v_i \) are less than \(k_i \)
 - keys in the subtree of \(v_i \) are between \(k_{i-1} \) and \(k_i \) \((i = 2, \ldots, d - 1)\)
 - keys in the subtree of \(v_d \) are greater than \(k_{d-1} \)
 - The leaves store no items and serve as placeholders

![Diagram of a multi-way search tree](image-url)
Multi-Way Inorder Traversal

- We can extend the notion of inorder traversal from binary trees to multi-way search trees.
- Namely, we visit item \((k_i, o_i)\) of node \(v\) between the recursive traversals of the subtrees of \(v\) rooted at children \(v_i\) and \(v_{i+1}\).
- An inorder traversal of a multi-way search tree visits the keys in increasing order.

![Multi-Way Inorder Traversal Diagram]

Multi-Way Searching

- Similar to search in a binary search tree.
- At each internal node with children \(v_1, v_2, \ldots, v_d\) and keys \(k_1, k_2, \ldots, k_{d-1}\):
 - \(k = k_i (i = 1, \ldots, d-1)\): the search terminates successfully.
 - \(k < k_i\): we continue the search in child \(v_i\).
 - \(k_{i-1} < k < k_i (i = 2, \ldots, d-1)\): we continue the search in child \(v_i\).
 - \(k > k_{d-1}\): we continue the search in child \(v_d\).
- Reaching an external node terminates the search unsuccessfully.
- Example: search for 30.

![Multi-Way Searching Diagram]
(2,4) Trees

A (2,4) tree (also called 2-4 tree or 2-3-4 tree) is a multi-way search with the following properties:

- **Node-Size Property**: every internal node has at most four children
- **Depth Property**: all the external nodes have the same depth

Depending on the number of children, an internal node of a (2,4) tree is called a 2-node, 3-node or 4-node.

Height of a (2,4) Tree

Theorem: A (2,4) tree storing n items has height $O(\log n)$

Proof:
- Let h be the height of a (2,4) tree with n items.
- Since there are at least 2^i items at depth $i = 0, \ldots, h-1$ and no items at depth h, we have
 $$ n \geq 1 + 2 + 4 + \ldots + 2^{h-1} = 2^h - 1 $$
- Thus, $h \leq \log (n + 1)$

Searching in a (2,4) tree with n items takes $O(\log n)$ time
Insertion

- We insert a new item \((k, o)\) at the parent \(v\) of the leaf reached by searching for \(k\).
 - We preserve the depth property but
 - We may cause an overflow (i.e., node \(v\) may become a 5-node)
- Example: inserting key 30 causes an overflow

![Insertion Diagram](image)

Overflow and Split

- We handle an overflow at a 5-node \(v\) with a split operation:
 - Let \(v_1 \ldots v_5\) be the children of \(v\) and \(k_1 \ldots k_4\) be the keys of \(v\)
 - Node \(v\) is replaced nodes \(v'\) and \(v''\)
 - \(v'\) is a 3-node with keys \(k_1, k_2\), and children \(v_1, v_2, v_3\)
 - \(v''\) is a 2-node with key \(k_4\) and children \(v_4, v_5\)
 - Key \(k_i\) is inserted into the parent \(u\) of \(v\) (a new root may be created)
- The overflow may propagate to the parent node \(u\)

![Overflow and Split Diagram](image)
Analysis of Insertion

Algorithm put\((k, o)\)

1. We search for key \(k\) to locate the insertion node \(v\).
2. We add the new entry \((k, o)\) at node \(v\).
3. while \(\text{overflow}(v)\)
 if \(\text{isRoot}(v)\)
 create a new empty root above \(v\)
 \(v \leftarrow \text{split}(v)\)

Let \(T\) be a \((2,4)\) tree with \(n\) items:
- Tree \(T\) has \(O(\log n)\) height.
- Step 1 takes \(O(\log n)\) time because we visit \(O(\log n)\) nodes.
- Step 2 takes \(O(1)\) time.
- Step 3 takes \(O(\log n)\) time because each split takes \(O(1)\) time and we perform \(O(\log n)\) splits.

Thus, an insertion in a \((2,4)\) tree takes \(O(\log n)\) time.

Deletion

- We reduce deletion of an entry to the case where the item is at the node with leaf children.
- Otherwise, we replace the entry with its inorder successor (or, equivalently, with its inorder predecessor) and delete the latter entry.
- Example: to delete key 24, we replace it with 27 (inorder successor).
Underflow and Fusion

- Deleting an entry from a node v may cause an underflow, where node v becomes a 1-node with one child and no keys.
- To handle an underflow at node v with parent u, we consider two cases.
- **Case 1:** the adjacent siblings of v are 2-nodes.
 - Fusion operation: we merge v with an adjacent sibling w and move an entry from u to the merged node v'.
 - After a fusion, the underflow may propagate to the parent u.

\[\begin{array}{c}
\text{u} & \begin{array}{c}
9 \quad 14 \\
\end{array} \\
\text{w} & \begin{array}{c}
2 \quad 5 \quad 7 \\
10 \\
\end{array} \\
\text{v' & \begin{array}{c}
2 \quad 5 \quad 7 \\
10 \quad 14 \\
\end{array} \\
\end{array}\]

Underflow and Transfer

- To handle an underflow at node v with parent u, we consider two cases.
- **Case 2:** an adjacent sibling w of v is a 3-node or a 4-node.
 - Transfer operation:
 1. we move a child of w to v.
 2. we move an item from u to v.
 3. we move an item from w to u.
 - After a transfer, no underflow occurs.

\[\begin{array}{c}
\text{u} & \begin{array}{c}
4 \quad 9 \\
2 \\
\end{array} \\
\text{w} & \begin{array}{c}
6 \quad 8 \\
\end{array} \\
\text{v} & \begin{array}{c}
2 \\
6 \quad 8 \\
9 \\
\end{array} \\
\end{array}\]
Analysis of Deletion

Let T be a $(2,4)$ tree with n items
- Tree T has $O(\log n)$ height
- In a deletion operation
 - We visit $O(\log n)$ nodes to locate the node from which to delete the entry
 - We handle an underflow with a series of $O(\log n)$ fusions, followed by at most one transfer
 - Each fusion and transfer takes $O(1)$ time
- Thus, deleting an item from a $(2,4)$ tree takes $O(\log n)$ time

Comparison of Map Implementations

<table>
<thead>
<tr>
<th></th>
<th>Search</th>
<th>Insert</th>
<th>Delete</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash Table</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>no ordered map methods</td>
</tr>
<tr>
<td></td>
<td>expected</td>
<td>expected</td>
<td>expected</td>
<td>simple to implement</td>
</tr>
<tr>
<td>Skip List</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>randomized insertion</td>
</tr>
<tr>
<td></td>
<td>high prob.</td>
<td>high prob.</td>
<td>high prob.</td>
<td>simple to implement</td>
</tr>
<tr>
<td>AVL and $(2,4)$</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>$\log n$</td>
<td>complex to implement</td>
</tr>
<tr>
<td>Tree</td>
<td>worst-case</td>
<td>worst-case</td>
<td>worst-case</td>
<td></td>
</tr>
</tbody>
</table>