Many sorting algorithms are comparison based.

- They sort by making comparisons between pairs of objects
- Examples: bubble-sort, selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort, ...

Let us therefore derive a lower bound on the running time of any algorithm that uses comparisons to sort \(n \) elements, \(x_1, x_2, ..., x_n \).
Counting Comparisons

- Let us just count comparisons then.
- Each possible run of the algorithm corresponds to a root-to-leaf path in a decision tree

```
<table>
<thead>
<tr>
<th>x_i &lt; x_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_a &lt; x_b</td>
</tr>
<tr>
<td>x_m &lt; x_o</td>
</tr>
<tr>
<td>x_p &lt; x_q</td>
</tr>
<tr>
<td>x_e &lt; x_f</td>
</tr>
<tr>
<td>x_k &lt; x_l</td>
</tr>
<tr>
<td>x_c &lt; x_d</td>
</tr>
</tbody>
</table>
```

Decision Tree Height

- The height of the decision tree is a lower bound on the running time
- Every input permutation must lead to a separate leaf output
- If not, some input ...4...5... would have same output ordering as ...5...4..., which would be wrong
- Since there are n!=1·2·…·n leaves, the height is at least \(\log(n!) \)
The Lower Bound

- Any comparison-based sorting algorithms takes at least \(\log(n!) \) time.
- Therefore, any such algorithm takes time at least

\[
\log(n!) \geq \log\left(\frac{n}{2}\right)^{\frac{n}{2}} = (n/2) \log(n/2).
\]

That is, any comparison-based sorting algorithm must run in \(\Omega(n \log n) \) time.