The Greedy Method and Text Compression

The Greedy Method Technique

- **The greedy method** is a general algorithm design paradigm, built on the following elements:
 - **configurations**: different choices, collections, or values to find
 - **objective function**: a score assigned to configurations, which we want to either maximize or minimize

- It works best when applied to problems with the **greedy-choice** property:
 - a globally-optimal solution can always be found by a series of local improvements from a starting configuration.
Text Compression

- Given a string X, efficiently encode X into a smaller string Y
 - Saves memory and/or bandwidth
- A good approach: **Huffman encoding**
 - Compute frequency $f(c)$ for each character c.
 - Encode high-frequency characters with short code words
 - No code word is a prefix for another code
 - Use an optimal encoding tree to determine the code words

Encoding Tree Example

- A **code** is a mapping of each character of an alphabet to a binary code-word
- A **prefix code** is a binary code such that no code-word is the prefix of another code-word
- An **encoding tree** represents a prefix code
 - Each external node stores a character
 - The code word of a character is given by the path from the root to the external node storing the character (0 for a left child and 1 for a right child)
Encoding Tree Optimization

- Given a text string X, we want to find a prefix code for the characters of X that yields a small encoding for X.
 - Frequent characters should have long code-words.
 - Rare characters should have short code-words.
- Example
 - $X = \text{abracadabra}$
 - T_1 encodes X into 29 bits
 - T_2 encodes X into 24 bits

Huffman’s Algorithm

- Given a string X, Huffman’s algorithm construct a prefix code that minimizes the size of the encoding of X.
- It runs in time $O(n + d \log d)$, where n is the size of X and d is the number of distinct characters of X.
- A heap-based priority queue is used as an auxiliary structure.
Huffman’s Algorithm

Algorithm Huffman(X):

Input: String X of length n with d distinct characters

Output: Coding tree for X

1. Compute the frequency $f(c)$ of each character c of X.
2. Initialize a priority queue Q.
3. **for each** character c in X **do**
 - Create a single-node binary tree T storing c.
 - Insert T into Q with key $f(c)$.
4. **while** $\text{len}(Q) > 1$ **do**
 - $(f_1, T_1) = Q.\text{remove}_\text{min}()$
 - $(f_2, T_2) = Q.\text{remove}_\text{min}()$
 - Create a new binary tree T with left subtree T_1 and right subtree T_2.
 - Insert T into Q with key $f_1 + f_2$.
5. $(f, T) = Q.\text{remove}_\text{min}()$

return tree T

Example

$X = $ abracadabra

Frequencies

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Initial Frequencies

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Final Frequencies

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
The Fractional Knapsack Problem (not in book)

- **Given:** A set S of n items, with each item i having
 - b_i - a positive benefit
 - w_i - a positive weight
- **Goal:** Choose items with maximum total benefit but with weight at most W.
- **If we are allowed to take fractional amounts, then this is the **fractional knapsack problem.**
 - In this case, we let x_i denote the amount we take of item i
 - **Objective:** maximize $\sum b_i \left(\frac{x_i}{w_i} \right)$
 - **Constraint:** $\sum x_i \leq W$

© 2014 Goodrich, Tamassia, Goldwasser Greedy Method 10
Example

Given: A set S of n items, with each item i having

- b_i - a positive benefit
- w_i - a positive weight

Goal: Choose items with maximum total benefit but with weight at most W.

<table>
<thead>
<tr>
<th>Items</th>
<th>Weight</th>
<th>Benefit</th>
<th>Value ($/ml$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 ml</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>8 ml</td>
<td>32</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2 ml</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>6 ml</td>
<td>30</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>1 ml</td>
<td>50</td>
<td>50</td>
</tr>
</tbody>
</table>

Solution:
- 1 ml of 5
- 2 ml of 3
- 6 ml of 4
- 1 ml of 2

"knapsack"

The Fractional Knapsack Algorithm

Greedy choice: Keep taking item with highest value (benefit to weight ratio)
- Since $\sum b_i x_i / w_i = \sum (b_i / w_i) x_i$
- Run time: $O(n \log n)$. Why?

Correctness: Suppose there is a better solution
- there is an item i with higher value than a chosen item j, but $x_i < w_i$ $x_j > 0$ and $v_i < v_j$
- If we substitute some i with j, we get a better solution
- How much of i: $\min\{w_i - x_j, x_j\}$
- Thus, there is no better solution than the greedy one

Algorithm $\text{fractionalKnapsack}(S, W)$

- Input: set S of items w/ benefit b_i and weight w_i; max. weight W
- Output: amount x_i of each item i to maximize benefit w/ weight at most W

for each item i in S

\[
\begin{align*}
 x_i &\leftarrow 0 \\
 v_i &\leftarrow b_i / w_i \quad \{\text{value}\} \\
 w &\leftarrow 0 \quad \{\text{total weight}\} \\
\end{align*}
\]

while $w < W$

- remove item i w/ highest v_i
- $x_i \leftarrow \min\{w_i, W - w\}$
- $w \leftarrow w + \min\{w_i, W - w\}$
Task Scheduling
(not in book)

- Given: a set \(T \) of \(n \) tasks, each having:
 - A start time, \(s_i \)
 - A finish time, \(f_i \) (where \(s_i < f_i \))

- Goal: Perform all the tasks using a minimum number of "machines."

Task Scheduling Algorithm

- Greedy choice: consider tasks by their start time and use as few machines as possible with this order.
 - Run time: \(O(n \log n) \). Why?
 - Correctness: Suppose there is a better schedule.
 - We can use \(k-1 \) machines
 - The algorithm uses \(k \)
 - Let \(i \) be first task scheduled on machine \(k \)
 - Machine \(i \) must conflict with \(k-1 \) other tasks
 - But that means there is no non-conflicting schedule using \(k-1 \) machines

Algorithm \(\text{taskSchedule}(T) \)

Input: set \(T \) of tasks w/ start time \(s_i \) and finish time \(f_i \)

Output: non-conflicting schedule with minimum number of machines

\[
m \leftarrow 0
\]

while \(T \) is not empty

- remove task \(i \) w/ smallest \(s_i \)

if there's a machine \(j \) for \(i \) then

- schedule \(i \) on machine \(j \)

else

\[
m \leftarrow m + 1
\]

schedule \(i \) on machine \(m \)
Example

- Given: a set T of n tasks, each having:
 - A start time, s
 - A finish time, f (where \(s < f \))
 - \([1,4], [1,3], [2,5], [3,7], [4,7], [6,9], [7,8]\) (ordered by start)
- Goal: Perform all tasks on min. number of machines

![Diagram showing task allocation on machines](image)