Minimum Spanning Trees

- Spanning subgraph
 - Subgraph of a graph G containing all the vertices of G
- Spanning tree
 - Spanning subgraph that is itself a (free) tree
- Minimum spanning tree (MST)
 - Spanning tree of a weighted graph with minimum total edge weight
- Applications
 - Communications networks
 - Transportation networks

© 2014 Goodrich, Tamassia, Goldwasser
Minimum Spanning Trees
Cycle Property:

Let T be a minimum spanning tree of a weighted graph G.
Let e be an edge of G that is not in T and C be the cycle formed by e with T.
For every edge f of C, $\text{weight}(f) \leq \text{weight}(e)$.

Proof:

- By contradiction
- If $\text{weight}(f) > \text{weight}(e)$, we can get a spanning tree of smaller weight by replacing e with f.

Partition Property:

Consider a partition of the vertices of G into subsets U and V.
Let e be an edge of minimum weight across the partition.
There is a minimum spanning tree of G containing edge e.

Proof:

- Let T be an MST of G.
- If T does not contain e, consider the cycle C formed by e with T and let f be an edge of C across the partition.
- By the cycle property, $\text{weight}(f) \leq \text{weight}(e)$.
- Thus, $\text{weight}(f) = \text{weight}(e)$.
- We obtain another MST by replacing f with e.
Prim-Jarnik’s Algorithm

- Similar to Dijkstra’s algorithm
- We pick an arbitrary vertex s and we grow the MST as a cloud of vertices, starting from s
- We store with each vertex v label $d(v)$ representing the smallest weight of an edge connecting v to a vertex in the cloud
- At each step:
 - We add to the cloud the vertex u outside the cloud with the smallest distance label
 - We update the labels of the vertices adjacent to u

Prim-Jarnik Pseudo-code

```
Algorithm PrimJarnik(G):
    Input: An undirected, weighted, connected graph $G$ with $n$ vertices and $m$ edges
    Output: A minimum spanning tree $T$ for $G$
    Pick any vertex $s$ of $G$
    $D[s] = 0$
    for each vertex $v \neq s$ do
        $D[v] = \infty$
    Initialize $T = \emptyset$.
    Initialize a priority queue $Q$ with an entry $(D[v], (v,\text{None}))$ for each vertex $v$, where $D[v]$ is the key in the priority queue, and $(v, \text{None})$ is the associated value.
    while $Q$ is not empty do
        $(u,e) = \text{value returned by } Q.\text{remove.\text{min}()}$
        Connect vertex $u$ to $T$ using edge $e$.
        for each edge $e' = (u,v)$ such that $v$ is in $Q$ do
            (check if edge $(u,v)$ better connects $v$ to $T$)
            if $w(u,v) < D[v]$ then
                $D[v] = w(u,v)$
                Change the key of vertex $v$ in $Q$ to $D[v]$.
                Change the value of vertex $v$ in $Q$ to $(v,e')$.
        return the tree $T$
```
Example

Example (contd.)
Analysis

- Graph operations
 - We cycle through the incident edges once for each vertex
- Label operations
 - We set/get the distance, parent and locator labels of vertex \(z \) \(O(\text{deg}(z)) \) times
 - Setting/getting a label takes \(O(1) \) time
- Priority queue operations
 - Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes \(O(\log n) \) time
 - The key of a vertex \(w \) in the priority queue is modified at most \(\text{deg}(w) \) times, where each key change takes \(O(\log n) \) time
- Prim-Jarnik’s algorithm runs in \(O((n + m) \log n) \) time provided the graph is represented by the adjacency list structure
 - Recall that \(\sum_v \text{deg}(v) = 2m \)
 - The running time is \(O(m \log n) \) since the graph is connected

Kruskal’s Approach

- Maintain a partition of the vertices into clusters
 - Initially, single-vertex clusters
 - Keep an MST for each cluster
 - Merge “closest” clusters and their MSTs
- A priority queue stores the edges outside clusters
 - Key: weight
 - Element: edge
- At the end of the algorithm
 - One cluster and one MST
Kruskal’s Algorithm

Algorithm Kruskal\((G)\):

Input: A simple connected weighted graph \(G\) with \(n\) vertices and \(m\) edges

Output: A minimum spanning tree \(T\) for \(G\)

for each vertex \(v\) in \(G\) do

- Define an elementary cluster \(C(v) = \{v\}\).
- Initialize a priority queue \(Q\) to contain all edges in \(G\), using the weights as keys.

\(T = \emptyset\) \{\(T\) will ultimately contain the edges of the MST\}

while \(T\) has fewer than \(n-1\) edges do

- \((u,v) = \text{value returned by } Q.\text{remove}_\text{min}\()\)
- Let \(C(u)\) be the cluster containing \(u\), and let \(C(v)\) be the cluster containing \(v\).
 - if \(C(u) \neq C(v)\) then
 - Add edge \((u,v)\) to \(T\).
 - Merge \(C(u)\) and \(C(v)\) into one cluster.

return tree \(T\)

Example

![Diagram of a graph with labeled edges and arrows indicating the merging of clusters during the Kruskal's algorithm process.](Image)
Example (contd.)

Data Structure for Kruskal’s Algorithm

- The algorithm maintains a forest of trees
- A priority queue extracts the edges by increasing weight
- An edge is accepted if it connects distinct trees
- We need a data structure that maintains a partition, i.e., a collection of disjoint sets, with operations:
 - `makeSet(u)`: create a set consisting of u
 - `find(u)`: return the set storing u
 - `union(A, B)`: replace sets A and B with their union
List-based Partition

- Each set is stored in a sequence
- Each element has a reference back to the set
 - operation \(\text{find}(u) \) takes \(O(1) \) time, and returns the set of which \(u \) is a member.
 - in operation \(\text{union}(A,B) \), we move the elements of the smaller set to the sequence of the larger set and update their references
 - the time for operation \(\text{union}(A,B) \) is \(\min(|A|, |B|) \)
- Whenever an element is processed, it goes into a set of size at least double, hence each element is processed at most \(\log n \) times

Partition-Based Implementation

- Partition-based version of Kruskal’s Algorithm
 - Cluster merges as unions
 - Cluster locations as finds
- Running time \(O((n + m) \log n) \)
 - Priority Queue operations: \(O(m \log n) \)
 - Union-Find operations: \(O(n \log n) \)
Java Implementation

```java
/** Computes a minimum spanning tree of graph g using Kruskal's algorithm. */
public static <V> PositionalList<Edge<Integer>> MST(Graph<V, Integer> g) {
    // tree is where we will store result as it is computed
    PositionalList<Edge<Integer>> tree = new LinkedPositionalList<>();
    // pq entries are edges of graph, with weights as keys
    PriorityQueue<Edge<Integer>, Integer> pq = new HeapPriorityQueue<>();
    // union-find forest of components of the graph
    Partition<Vertex<V>> forest = new Partition<>();
    // map each vertex to the forest position
    Map<Vertex<V>, Position<Vertex<V>>> positions = new ProbeHashMap<>();

    for (Vertex<V> v : g.vertices())
        positions.put(v, forest.makeGroup(v));

    for (Edge<Integer> e : g.edges())
        pq.insert(e.getValue(), e);

    for (int i = 1; i < g.numVertices(); i++)
        if (pq.isEmpty())
            return tree;

    int size = g.numVertices();
    while (tree.size() != size - 1 && !pq.isEmpty()) {
        Entry<Integer, Edge<Integer>> entry = pq.removeMin();
        Edge<Integer> edge = entry.getValue();
        Vertex<V>[] endpoints = g.endVertices(edge);
        Position<Vertex<V>> a = forest.find(positions.get(endpoints[0]));
        Position<Vertex<V>> b = forest.find(positions.get(endpoints[1]));
        if (a != b) {
            tree.addLast(edge);
            forest.union(a, b);
        }
    }

    return tree;
}
```

Java Implementation, 2

```java
int size = g.numVertices();
while (tree.size() != size - 1 && !pq.isEmpty()) {
    Entry<Integer, Edge<Integer>> entry = pq.removeMin();
    Edge<Integer> edge = entry.getValue();
    Vertex<V>[] endpoints = g.endVertices(edge);
    Position<Vertex<V>> a = forest.find(positions.get(endpoints[0]));
    Position<Vertex<V>> b = forest.find(positions.get(endpoints[1]));
    if (a != b) {
        tree.addLast(edge);
        forest.union(a, b);
    }
}
return tree;
```
Baruvka’s Algorithm (Exercise)

- Like Kruskal’s Algorithm, Baruvka’s algorithm grows many clusters at once and maintains a forest T.
- Each iteration of the while loop halves the number of connected components in forest T.
- The running time is $O(m \log n)$.

Algorithm $\text{BaruvkaMST}(G)$

$T \leftarrow V$ (just the vertices of G)

while T has fewer than $n - 1$ edges do

for each connected component C in T do

Let edge e be the smallest-weight edge from C to another component in T.

if e is not already in T then

Add edge e to T.

return T.

Example of Baruvka’s Algorithm (animated)