Shortest Paths

Weighted Graphs

- In a weighted graph, each edge has an associated numerical value, called the weight of the edge.
- Edge weights may represent distances, costs, etc.
- Example:
 - In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports.
Shortest Paths

- Given a weighted graph and two vertices \(u \) and \(v \), we want to find a path of minimum total weight between \(u \) and \(v \).
- Length of a path is the sum of the weights of its edges.
- Example:
 - Shortest path between Providence and Honolulu
- Applications
 - Internet packet routing
 - Flight reservations
 - Driving directions

Example:
- Shortest path between Providence and Honolulu

Applications
- Internet packet routing
- Flight reservations
- Driving directions

Shortest Path Properties

Property 1:
- A subpath of a shortest path is itself a shortest path

Property 2:
- There is a tree of shortest paths from a start vertex to all the other vertices

Example:
- Tree of shortest paths from Providence

Graph showing shortest paths between various cities with weights on edges.
Dijkstra’s Algorithm

- The distance of a vertex \(v \) from a vertex \(s \) is the length of a shortest path between \(s \) and \(v \).
- Dijkstra’s algorithm computes the distances of all the vertices from a given start vertex \(s \).
- Assumptions:
 - the graph is connected
 - the edges are undirected
 - the edge weights are nonnegative
- We grow a “cloud” of vertices, beginning with \(s \) and eventually covering all the vertices.
- We store with each vertex \(v \) a label \(d(v) \) representing the distance of \(v \) from \(s \) in the subgraph consisting of the cloud and its adjacent vertices.
- At each step:
 - We add to the cloud the vertex \(u \) outside the cloud with the smallest distance label, \(d(u) \).
 - We update the labels of the vertices adjacent to \(u \).

Edge Relaxation

- Consider an edge \(e = (u, z) \) such that
 - \(u \) is the vertex most recently added to the cloud
 - \(z \) is not in the cloud
- The relaxation of edge \(e \) updates distance \(d(z) \) as follows:
 \[
d(z) \leftarrow \min\{d(z), d(u) + \text{weight}(e)\}
\]
Dijkstra’s Algorithm

Algorithm ShortestPath(G, s):

- **Input**: A weighted graph G with nonnegative edge weights, and a distinguished vertex s of G.
- **Output**: The length of a shortest path from s to v for each vertex v of G.

Initialize $D[s] = 0$ and $D[v] = \infty$ for each vertex $v \neq s$.

Let a priority queue Q contain all the vertices of G using the D labels as keys.

while Q is not empty do

- {pull a new vertex u into the cloud}
- $u = \text{value returned by } Q\text{.remove}\text{.min}()$
- for each vertex v adjacent to u such that v is in Q do
- {perform the relaxation procedure on edge (u, v)}
- if $D[u] + w(u, v) < D[v]$ then
- $D[v] = D[u] + w(u, v)$
- Change to $D[v]$ the key of vertex v in Q.

return the label $D[v]$ of each vertex v

Analysis of Dijkstra’s Algorithm

- **Graph operations**
 - We find all the incident edges once for each vertex
- **Label operations**
 - We set/get the distance and locator labels of vertex v $O(\text{deg}(v))$ times
 - Setting/getting a label takes $O(1)$ time
- **Priority queue operations**
 - Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes $O(\log n)$ time
 - The key of a vertex in the priority queue is modified at most $\text{deg}(w)$ times, where each key change takes $O(\log n)$ time
- **Dijkstra’s algorithm runs in** $O((n + m) \log n)$ time provided the graph is represented by the adjacency list/map structure
 - Recall that $\sum \text{deg}(v) = 2m$
 - The running time can also be expressed as $O(m \log n)$ since the graph is connected
Java Implementation

```java
/** Computes shortest-path distances from src vertex to all reachable vertices of g. */
public static <V> Map<Vertex<V>, Integer> shortestPathLength(Graph<V, Integer> g, Vertex<V> src) {
    // d.get(v) is upper bound on distance from src to v
    Map<Vertex<V>, Integer> d = new ProbHashMap<>();
    // map reachable v to its d value
    Map<Vertex<V>, Integer> cloud = new ProbHashMap<>();
    // pq will have vertices as elements, with d.get(v) as key
    AdaptablePriorityQueue<Integer, Vertex<V>> pq;
    // maps from vertex to its pq locator
    Map<Vertex<V>, Integer> pqTokens;
    pqTokens = new ProbHashMap<>();

    // for each vertex v of the graph, add an entry to the priority queue, with
    // the source having distance 0 and all others having infinite distance
    for (Vertex<V> v : g.vertices()) {
        if (v.equals(src))
            d.put(v, 0);
        else
            d.put(v, Integer.MAX_VALUE);
        pqTokens.put(v, pq.insert(d.get(v), v)); // save entry for future updates
    }

    // now begin adding reachable vertices to the cloud
    while (!pq.isEmpty()) {
        Entry<Integer, Vertex<V>> entry = pq.removeMin();
        int key = entry.getKey();
        Vertex<V> u = entry.getValue();
        cloud.put(u, key); // this is actual distance to u
        pqTokens.remove(u); // u is no longer in pq
        for (Edge<Integer> e : g.outgoingEdges(u)) {
            Vertex<V> v = e.opposite(u);
            if (cloud.get(v) == null) {
                // perform relaxation step on edge (u,v)
                int wt = e.getElement();
                if (d.get(u) + wt < d.get(v)) { // better path to v?
                    d.put(v, d.get(u) + wt); // update the distance
                    pq.replaceKey(pqTokens.get(v), d.get(v)); // update the pq entry
                }
            }
        }
    }
    return cloud; // this only includes reachable vertices
```
Why Dijkstra’s Algorithm Works

- Dijkstra’s algorithm is based on the greedy method. It adds vertices by increasing distance.
 - Suppose it didn’t find all shortest distances. Let F be the first wrong vertex the algorithm processed.
 - When the previous node, D, on the true shortest path was considered, its distance was correct.
 - But the edge (D, F) was relaxed at that time!
 - Thus, so long as \(d(F) \geq d(D) \), F’s distance cannot be wrong. That is, there is no wrong vertex.

Why It Doesn’t Work for Negative-Weight Edges

- Dijkstra’s algorithm is based on the greedy method. It adds vertices by increasing distance.
 - If a node with a negative incident edge were to be added late to the cloud, it could mess up distances for vertices already in the cloud.
 - C’s true distance is 1, but it is already in the cloud with \(d(C) = 5 \)!
Bellman-Ford Algorithm (not in book)

- Works even with negative-weight edges
- Must assume directed edges (for otherwise we would have negative-weight cycles)
- Iteration i finds all shortest paths that use i edges.
- Running time: $O(nm)$.
- Can be extended to detect a negative-weight cycle if it exists
 - How?

Algorithm $BellmanFord(G, s)$

```plaintext
for all $v \in G.vertices()$
  if $v = s$
    setDistance($v$, 0)
  else
    setDistance($v$, $\infty$)
for $i \leftarrow 1$ to $n - 1$
do
  for each $e \in G.edges()$
    \{ relax edge $e$ \}
    $u \leftarrow G.origin(e)$
    $z \leftarrow G.opposite(u,e)$
    $r \leftarrow getDistance(u) + weight(e)$
    if $r < getDistance(z)$
      setDistance($z$, $r$)
```

Bellman-Ford Example

Nodes are labeled with their $d(v)$ values

© 2014 Goodrich, Tamassia, Goldwasser

Shortest Paths

15
DAG-based Algorithm
(not in book)

- Works even with negative-weight edges
- Uses topological order
- Doesn’t use any fancy data structures
- Is much faster than Dijkstra’s algorithm
- Running time: $O(n+m)$.

Algorithm *DagDistances*(G, s)

for all $v \in G\text{-vertices}()$

if $v = s$

setDistance(v, 0)

else

setDistance(v, ∞)

end if

end for

{ Perform a topological sort of the vertices }

for $u \leftarrow 1$ to n do

{ in topological order }

for each $e \in G\text{-outEdges}(u)$

{ relax edge e }

$z \leftarrow G\text{-opposite}(u,e)$

$r \leftarrow$ getDistance(u) + weight(e)

if $r <$ getDistance(z)

setDistance(z, r)

end if

end for

end for

DAG Example

Nodes are labeled with their $d(v)$ values