
1

Designing the system

creative process of transforming
the problem into a solution

Topics

 Architecture design
 Distributed System Architecture
 Application Architecture
 Object-oriented Design

2

Software architecture

 The design process for identifying the
sub-systems making up a system and
the framework for sub-system control
and communication is architectural
design.

 The output of this design process is a
description of the software architecture.

System organisation

 Reflects the basic strategy that is used
to structure a system.

 Three organisational styles are widely
used:
 A shared data repository style;
 A shared services and servers style;
 An abstract machine or layered style.

3

The repository model

 Sub-systems must exchange data. This
may be done in two ways:
 Shared data is held in a central database

or repository and may be accessed by all
sub-systems;

 Each sub-system maintains its own
database and passes data explicitly to
other sub-systems.

 When large amounts of data are to be
shared, the repository model of sharing
is most commonly used.

CASE toolset architecture

4

Client-server model

 Distributed system model which shows
how data and processing is distributed
across a range of components.

 Set of stand-alone servers which
provide specific services such as
printing, data management, etc.

 Set of clients which call on these
services.

 Network which allows clients to access
servers.

Film and picture library

5

Abstract machine (layered)
model

 Used to model the interfacing of sub-
systems.

 Organises the system into a set of
layers (or abstract machines) each of
which provide a set of services.

 Supports the incremental development
of sub-systems in different layers.
When a layer interface changes, only
the adjacent layer is affected.

 However, often artificial to structure
systems in this way.

Version management system

6

Modular decomposition

 Another structural level where sub-
systems are decomposed into modules.

 Two modular decomposition models
covered
 An object model where the system is

decomposed into interacting object;
 A pipeline or data-flow model where the

system is decomposed into functional
modules which transform inputs to
outputs.

Object models

 Structure the system into a set of
loosely coupled objects with well-
defined interfaces.

 Object-oriented decomposition is
concerned with identifying object
classes, their attributes and operations.

 When implemented, objects are created
from these classes and some control
model used to coordinate object
operations

7

Invoice processing system

Object model advantages

 Objects are loosely coupled so their
implementation can be modified without
affecting other objects.

 The objects may reflect real-world
entities.

 OO implementation languages are
widely used.

 However, object interface changes may
cause problems and complex entities
may be hard to represent as objects.

8

Function-oriented pipelining

 Functional transformations process their
inputs to produce outputs.

 May be referred to as a pipe and filter
model (as in UNIX shell).

 Variants of this approach are very
common. When transformations are
sequential, this is a batch sequential
model which is extensively used in data
processing systems.

 Not really suitable for interactive
t

Invoice processing system

9

Pipeline model advantages

 Supports transformation reuse.
 Intuitive organisation for stakeholder

communication.
 Easy to add new transformations.
 Relatively simple to implement as either

a concurrent or sequential system.
 However, requires a common format for

data transfer along the pipeline and
difficult to support event-based
interaction.

Topics

 Architecture design
 Distributed System Architecture
 Application Architecture
 Object-oriented Design

10

Thin and fat clients

 Thin-client model
 In a thin-client model, all of the application

processing and data management is
carried out on the server. The client is
simply responsible for running the
presentation software.

 Fat-client model
 In this model, the server is only

responsible for data management. The
software on the client implements the
application logic and the interactions with
h

A 3-tier C/S architecture

11

Topics

 Architecture design
 Distributed System Architecture
 Application Architecture
 Object-oriented Design

Generic application
architectures

 Application systems are designed to
meet an organisational need.

 As businesses have much in common,
their application systems also tend to
have a common architecture that
reflects the application requirements.

 A generic architecture is configured and
adapted to create a system that meets
specific requirements.

12

Application type examples
 Data processing systems

 Billing systems;
 Payroll systems.

 Transaction processing systems
 E-commerce systems;
 Reservation systems.

 Event processing systems
 Word processors;
 Real-time systems.

 Language processing systems
 Compilers;
 Command interpreters.

Data processing systems

 Systems that are data-centred where
the databases used are usually orders
of magnitude larger than the software
itself.

 Data is input and output in batches
 Input: A set of customer numbers and

associated readings of an electricity meter;
 Output: A corresponding set of bills, one

for each customer number.
 Data processing systems usually have

an input-process-output structure

13

Data-flow diagrams

 Show how data is processed as it
moves through a system.

 Transformations are represented as
round-edged rectangles, data-flows as
arrows between them and files/data
stores as rectangles.

Salary payment DFD

14

Transaction processing
systems

 Process user requests for information
from a database or requests to update
the database.

 From a user perspective a transaction
is:
 Any coherent sequence of operations that

satisfies a goal;
 For example - find the times of flights from

London to Paris.
 Users make asynchronous requests for

service which are then processed by a

Transaction management

15

Information systems
architecture

 Information systems have a generic
architecture that can be organised as a
layered architecture.

 Layers include:
 The user interface
 User communications
 Information retrieval
 System database

Information system structure

16

LIBSYS architecture
 The library system LIBSYS is an example of an

information system.
 User communications layer:

 LIBSYS login component;
 Form and query manager;
 Print manager;

 Information retrieval layer
 Distributed search;
 Document retrieval;
 Rights manager;
 Accounting.

LIBSYS organisation

17

Layered system
implementation

 Each layer can be implemented as a
large scale component running on a
separate server. This is the most
commonly used architectural model for
web-based systems.

 On a single machine, the middle layers
are implemented as a separate program
that communicates with the database
through its API.

 Fine-grain components within layers
can be implemented as web services

E-commerce system
architecture

 E-commerce systems are Internet-based resource
management systems that accept electronic
orders for goods or services.

 They are usually organised using a multi-tier
architecture with application layers associated with
each tier.

18

Event processing systems

 These systems respond to events in the
system’s environment.

 Their key characteristic is that event
timing is unpredictable so the
architecture has to be organised to
handle this.

 Many common systems such as word
processors, games, etc. are event
processing systems.

Editing systems

 Real-time systems and editing systems
are the most common types of event
processing system.

 Editing system characteristics:
 Single user systems;
 Must provide rapid feedback to user

actions;
 Organised around long transactions so may

include recovery facilities.

19

Editing system components

 Editing systems are naturally object-
oriented:
 Screen - monitors screen memory and detects events;
 Event - recognises events and passes them for processing;
 Command - executes a user command;
 Editor data - manages the editor data structure;
 Ancillary data - manages other data such as styles and

preferences;
 File system - manages file I/O;
 Display - updates the screen display.

Editing system architecture

20

Language processing systems
 Accept a natural or artificial language as input and

generate some other representation of that
language.

 May include an interpreter to act on the
instructions in the language that is being
processed.

 Used in situations where the easiest way to solve a
problem is to describe an algorithm or describe the
system data
 Meta-case tools process tool descriptions, method

rules, etc and generate tools.

Language processing
components

 Lexical analyser
 Symbol table
 Syntax analyser
 Syntax tree
 Semantic analyser
 Code generator

21

Data-flow model of a compiler

Repository model of a
compiler

22

Topics

 Architecture design
 Distributed System Architecture
 Application Architecture
 Object-oriented Design

Object-oriented development

 Object-oriented analysis, design and
programming are related but distinct.

 OOA is concerned with developing an
object model of the application domain.

 OOD is concerned with developing an
object-oriented system model to
implement requirements.

 OOP is concerned with realising an OOD
using an OO programming language

h J C

23

Characteristics of OOD

 Objects are abstractions of real-world or
system entities and manage
themselves.

 Objects are independent and
encapsulate state and representation
information.

 System functionality is expressed in
terms of object services.

 Shared data areas are eliminated.
Obj t

Advantages of OOD

 Easier maintenance. Objects may be
understood as stand-alone entities.

 Objects are potentially reusable
components.

 For some systems, there may be an
obvious
mapping from real world entities to
system
objects.

24

Objects and object classes

An object is an entity that has a state and a defined set of
operations which operate on that state. The state is represented as a
set of object attributes. The operations associated with the object
provide services to other objects (clients) which request these
services when some computation is required.

Objects are created according to some object class definition. An
object class definition serves as a template for objects. It includes
declarations of all the attributes and services which should be
associated with an object of that class.

Object identification

 Identifying objects (or object classes) is the
most difficult part of object oriented design.

 There is no 'magic formula' for object
identification. It relies on the skill, experience
and domain knowledge of system designers.

 Object identification is an iterative process.
You are unlikely to get it right first time.

25

Approaches to identification
 Use a grammatical approach based on a natural

language description of the system (used in Hood
OOD method).

 Base the identification on tangible things in the
application domain.

 Use a behavioural approach and identify objects
based on what participates in what behaviour.

 Use a scenario-based analysis. The objects,
attributes and methods in each scenario are
identified.

The Unified Modeling
Language

 Several different notations for describing
object-oriented designs were proposed in the
1980s and 1990s.

 The Unified Modeling Language is an
integration of these notations.

 It describes notations for a number of
different models that may be produced during
OO analysis and design.

 It is now a de facto standard for OO
modelling.

26

What can you model with UML
 Structure Diagrams

 Class diagram
 Object diagram
 Component diagram
 Composite structure diagram
 Package diagram
 Deployment diagram

 Behavior Diagrams
 Use case diagram
 Activity diagram
 State machine diagram

 Interaction diagrams
 Sequence diagram
 Communication Diagram
 Timing Diagram
 Interaction Overview Diagram

Design models

 Design models show the objects and
object classes and relationships
between these entities.

 Static models describe the static
structure of the system in terms of
object classes and relationships.

 Dynamic models describe the
dynamic interactions between objects.

27

Examples of design models

 Sub-system models that show logical
groupings of objects into coherent
subsystems.

 Sequence models that show the
sequence of object interactions.

 State machine models that show
how individual objects change their
state in response to events.

UML – Class diagram
 Name, attribute, operations
 Relationship

 Generalization
 Association

 Bi-direction, uni-direction
 multiplicity

 Dependency
 Aggregation

 Basic aggregation
 Composition aggregation

 Visibility
 Public,protected,private,package

28

UML – Sequence Model
 Objects

 First placing the objects that participate in the interaction at the top
of your diagram
 Place the object that initiate the interaction at the left, and increasing

more subordinate objects to the right
 Messages

 Then Place the messages what these object send and receive along
the Y axis, in order of increasing time from top to bottom

 Object lifeline
 Vertical dashed line from top to the bottom
 Objects may be created during the interaction

 Focus of control
 Tall think rectangle shows the period of time during which an

object is performing an action, either directly or through a
subroutine procedure.

UML – Statechart Diagram

 Models the lifetime behavior of an
individual object (a class, a use case,
an entire system)
 Focus on the event-ordered behavior of an

object – modeling reactive systems

29

UML – Statechart Diagram
 States

 A state is a condition or situation during which it satisfies
some condition, performs some activity, or waits for some
event. An object remains in a state for a finite amount of
time
 Name

 Short nouns with the first latter capitalized
 Entry/exit actions

 Internal transitions
 Substates

 Initial States
 Final states

UML – Statechart Diagram
 Transitions

 Transition is a relationship between two states indicating
that an object in the first state will perform certain actions
and enter the second state when a specified event occurs
and specified conditions are satisfied.

 A transition have five parts
 Source state
 Event trigger
 Guard condition
 Action
 Target state

30

UML – Statechart diagram

 Example: parsing a stream
‘<‘ string ‘>’ body ‘;’

Weather system description
A weather mapping system is required to generate weather maps on a
regular basis using data collected from remote, unattended weather stations
and other data sources such as weather observers, balloons and satellites.
Weather stations transmit their data to the area computer in response to a
request from that machine.

The area computer system validates the collected data and integrates it with
the data from different sources. The integrated data is archived and, using
data from this archive and a digitised map database a set of local weather
maps is created. Maps may be printed for distribution on a special-purpose
map printer or may be displayed in a number of different formats.

31

Layered architecture

Subsystems in the weather mapping
system

32

Weather station architecture

Weather station description
A weather station is a package of software controlled instruments
which collects data, performs some data processing and transmits
this data for further processing. The instruments include air and
ground thermometers, an anemometer, a wind vane, a barometer
and a rain gauge. Data is collected periodically.

When a command is issued to transmit the weather data, the
weather station processes and summarises the collected data. The
summarised data is transmitted to the mapping computer when a
request is received.

33

Weather station object classes

 Ground thermometer, Anemometer,
Barometer
 Application domain objects that are ‘hardware’

objects related to the instruments in the system.

 Weather station
 The basic interface of the weather station to its

environment. It therefore reflects the interactions
identified in the use-case model.

 Weather data
 Encapsulates the summarised data from the

instruments.

Weather station object classes

34

Further objects and object
refinement

 Use domain knowledge to identify more objects and
operations
 Weather stations should have a unique identifier;
 Weather stations are remotely situated so instrument

failures have to be reported automatically. Therefore
attributes and operations for self-checking are required.

 Active or passive objects
 In this case, objects are passive and collect data on request

rather than autonomously. This introduces flexibility at the
expense of controller processing time.

Subsystem models

 Shows how the design is organised into
logically related groups of objects.

 In the UML, these are shown using
packages - an encapsulation construct.
This is a logical model. The actual
organisation of objects in the system
may be different.

35

Weather station subsystems

Sequence models

 Sequence models show the sequence of
object interactions that take place
 Objects are arranged horizontally across the top;
 Time is represented vertically so models are read

top to bottom;
 Interactions are represented by labelled arrows,

Different styles of arrow represent different types
of interaction;

 A thin rectangle in an object lifeline represents the
time when the object is the controlling object in
the system.

36

Data collection sequence

Statecharts

 Show how objects respond to different
service requests and the state transitions
triggered by these requests
 If object state is Shutdown then it responds to a

Startup() message;
 In the waiting state the object is waiting for

further messages;
 If reportWeather () then system moves to

summarising state;
 If calibrate () the system moves to a calibrating

state;
 A collecting state is entered when a clock signal is

received.

37

Weather station state diagram

Changes required

 Add an object class called Air quality as
part of WeatherStation.

 Add an operation reportAirQuality to
WeatherStation. Modify the control
software to collect pollution readings.

 Add objects representing pollution
monitoring instruments.

38

Pollution monitoring

Team Project Design

 Design artifacts
 Architecture Design
 Static models

 Class diagram
 Package diagram (optional)

 Dynamic models (choose appropriate model for
each use case)
 Sequence diagram
 Statechart diagram
 Activity diagram

