Let us change our traditional attitude to the construction of programs. Instead of imagining that our main task is to instruct a computer what to do, let us concentrate rather on explaining to human beings what we want a computer to do.

Donald Knuth
What Will be Covered?

- This component discusses why detecting race conditions in a concurrent program is difficult.
- There are two parts:
 A. A few terms in complexity theory will be discussed in a rather intuitive way. These terms illustrate the difficulty in catching race conditions.
 B. Then, a set of examples will be presented to illustrate some ideas for catching possible race conditions.
Race Conditions Revisited

- If a program produces non-deterministic results, there could be race conditions.
- Note that having non-deterministic results does not mean this program has race conditions.
- A race condition produces *non-deterministic* results, but producing non-deterministic results does not always indicate the existence of race conditions,
- We covered this in an earlier lecture.
- See 05-Sync-Basics.pdf for the details.
Race Conditions: Definition

- A **Race Condition** occurs, if
 - two or more processes/threads manipulate a shared resource concurrently, and
 - the outcome of the execution depends on the order in which the access takes place.

- **Synchronization** is needed to prevent race conditions from happening.
Execution Sequences

- Always use instruction level interleaving to demonstrate the existence of race conditions, because

 a) higher-level language statements are not atomic and can be switched in the middle of execution

 b) instruction level interleaving can show clearly the “sharing” of a resource among processes and threads.

 c) two execution sequences are needed to show the answer depends on order of execution.
Catching Race Conditions: An Extremely Difficult Task

- **Statically** detecting race conditions exactly in a program using multiple semaphores is NP-hard.

- Thus, no efficient algorithms are available. We have to design programs carefully, and use debugging skills wisely.

- It is virtually impossible to catch race conditions **dynamically** because hardware must examine every memory access.
Terms: P, NP, NP-Hard, etc.
P, NP and NP-Hard: 1/7

- **Decision Problems**: A *decision* problem is a problem that needs a **YES** or **NO** answer. By repeatedly answering decision problems, one can transform a non-decision problem to a sequence of decision problems.

- **Example 1**: Given a set of positive integers, are there any even (or odd) numbers?

- **Example 2**: Given a set of integers (positive, zero and negative), is there a subset that sums to zero? For example, the subset \{ 4, 1, -3, -2\} of \{ 8, 4, 1, -3, -2, 9 \} sums to 0, and the answer is **YES**. The answer is **NO** with \{ 4, 2, -7, -3 \}.
P, NP and NP-Hard: 2/7

- **Class P Problems**: If a problem L can be solved in *polynomial time*, L is in class P. This means if there is an algorithm that runs in polynomial time to find the YES/NO answer, this problem is in P.

- **Example 1**: Is there an even/odd number in a set of n positive integers? You can easily design an algorithm to find the answer using $O(n)$ comparisons.

- **Example 2**: Is a given array of n elements sorted? An $O(n)$ algorithm is always possible.

- These are *solvable* problems.
P, NP and NP-Hard: 3/7

- **Class NP Problems**: Given a “solution” if we are able to **VERIFY** whether that “solution” is actually a solution in polynomial time, this is a **verifiable** problem.

- **Example**: Given a set of distinct integers, can it be partitioned into two disjoint sets? Let the given set be S and let A and B be the two possible partitions. It is easy to verify if $A \cup B = S$ and $A \cap B = \emptyset$ in polynomial time.

- If we are able to guess a solution to a problem L and verify it in polynomial time, L is in the **Non-deterministic Polynomial** class NP.
Obviously, class P is a subset of class NP as any problem in P is already solvable in polynomial time, and hence is in NP (i.e., $P \subseteq NP$).

One of the most challenging questions in computer science is whether $P = NP$ holds. If $P = NP$ holds, all problems have efficient solutions.

This is one of the well-known Millennium Problems: See https://www.claymath.org/millennium-problems/p-vs-np-problem for the details.
P, NP and NP-Hard: 5/7

- **NP-Completeness.** A problem L is in the NP-Complete class if L is in NP and every problem H in NP is reducible (or convertible) to L in polynomial time.

- Problems in NP-Complete are the hardest problems. If one solves a NP-Complete problem in polynomial time, all NP-Complete problems are solved in polynomial time!

If $P \neq NP$:
P, NP and NP-Hard: 6/7

- **NP-Hardness**: A (decision) problem L is NP-Hard if every problem H in NP is reducible (or convertible) to L in polynomial time. Note that L does not have to be in NP.

![Diagram showing the relationships between P, NP, NP-Hard, and NP-Complete problems]

If $P \neq NP$:
P, NP and NP-Hard: 7/7

- **NP-Hard** class contains those hardest problems that may not be in \(NP \).
- The **NP-Complete** class contains those hardest problems in \(NP \).

\[\text{if } P \neq NP: \]

![Diagram showing the relationship between P, NP, NP-Hard, and NP-Complete classes.](image)
Examples
Problem Statement

- Two groups, **A** and **B**, of processes *exchange messages*.
- Each process in **A** runs function $T_A()$, and each process in **B** runs function $T_B()$.
- Both $T_A()$ and $T_B()$ have an infinite loop and never stop.
- In the following, we show execution sequences that can cause race conditions. You may always find other execution sequences without race conditions.
Processes in group A

T_A()
{
 while (1) {
 // do something
 Ex. Message
 // do something
 }
}

Processes in group B

T_B()
{
 while (1) {
 // do something
 Ex. Message
 // do something
 }
}
What is “Exchange Message”?

- When a process in A makes a message available, it can continue only if it receives a message from a process in B who has successfully retrieved A’s message.
- Similarly, when a process in B makes a message available, it can continue only if it receives a message from a process in A who has successfully retrieved B’s message.
- **How about exchanging business cards?**
Watch for Race Conditions

- Suppose process A_1 presents its message for B to retrieve. If A_2 comes for message exchange before B can retrieve A_1’s, will A_2’s message overwrite A_1’s?

- Suppose B has already retrieved A_1’s message. Is it possible that when B presents its message, A_2 picks it up rather than by A_1?

- Thus, the messages between A and B must be well-protected to avoid race conditions.
First Attempt

```c
sem A = 0, B = 0;
int Buf_A, Buf_B;

T_A()
{
    int V_a;
    while (1) {
        V_a = ..;
        B.signal();
        A.wait();
        Buf_A = V_a;
        V_a = Buf_B;
    }
}

T_B()
{
    int V_b;
    while (1) {
        V_b = ..;
        A.signal();
        B.wait();
        Buf_B = V_b;
        V_b = Buf_A;
    }
}
```

I am ready

Wait for your card!
First Attempt: Problem (a)

<table>
<thead>
<tr>
<th>Thread A</th>
<th>Thread B</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.signal()</td>
<td></td>
</tr>
<tr>
<td>A.wait()</td>
<td>A.signal()</td>
</tr>
<tr>
<td></td>
<td>B.wait()</td>
</tr>
<tr>
<td>Buf_A = V_a</td>
<td></td>
</tr>
<tr>
<td>V_a = Buf_B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Buf_B = V_b</td>
</tr>
</tbody>
</table>

Buf_B has no value, yet!

Oops, it is too late!
First Attempt: Problem (b)

<table>
<thead>
<tr>
<th>A₁</th>
<th>A₂</th>
<th>B₁</th>
<th>B₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.signal()</td>
<td>A.signal()</td>
<td>A.signal()</td>
<td>A.signal()</td>
</tr>
<tr>
<td>B.wait()</td>
<td>B.wait()</td>
<td>B.wait()</td>
<td>B.wait()</td>
</tr>
<tr>
<td>A.wait()</td>
<td>A.wait()</td>
<td>A.wait()</td>
<td>A.wait()</td>
</tr>
</tbody>
</table>

Race Condition
What Did We Learn?

- If there are shared data items, always protect them properly. Without a proper mutual exclusion, race conditions are likely to occur.
- In this first attempt, both global variables `Buf_A` and `Buf_B` are shared and should be protected.
Second Attempt

```c
sem A = B = 0;
sem Mutex = 1;
int Buf_A, Buf_B;

T_A()
{ int V_a;
  while (1) {
    B.signal();
    A.wait();
    Mutex.wait();
    Buf_A = V_a;
    Mutex.signal();
    B.signal();
    A.wait();
    Mutex.wait();
    V_a = Buf_B;
    Mutex.signal();
  }
}

T_B()
{ int V_b;
  while (1) {
    A.signal();
    B.wait();
    Mutex.wait();
    Buf_B = V_b;
    Mutex.signal();
    A.signal();
    B.wait();
    Mutex.wait();
    V_b = Buf_A;
    Mutex.signal();
  }
}
```

shakes hands

protection???

offer my card
Second Attempt: Problem

Race Condition

<table>
<thead>
<tr>
<th>A₁</th>
<th>A₂</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.signal()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.wait()</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.signal()</td>
<td>B.wait()</td>
</tr>
<tr>
<td>Buf_A = ..</td>
<td></td>
<td>Buf_B = ..</td>
</tr>
<tr>
<td></td>
<td>B.signal()</td>
<td></td>
</tr>
<tr>
<td>A.wait()</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A.signal()</td>
<td>B.wait()</td>
</tr>
<tr>
<td>Buf_A = ..</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What Did We Learn?

▪ Improper protection is no better than no protection, because it gives us an illusion that data have been well-protected.

▪ We frequently forget that protection is done by a critical section, which cannot be divided. That is, execution in the protected critical section must be atomic.

▪ Thus, protecting “here is my card” followed by “may I have yours” separately is not a good idea.
Third Attempt

```c
sem Aready = Bready = 1; // ready to proceed
sem Adone = Bdone = 0;
int Buf_A, Buf_B;

T_A()
{
    int V_a;
    while (1) {
        Aready.wait();
        Buf_A = ..;
        Adone.signal();
        Bdone.wait();
        V_a = Buf_B;
        Aready.signal();
    }
}

T_B()
{
    int V_b;
    while (1) {
        Bready.wait();
        Buf_B = ..;
        Bdone.signal();
        Adone.wait();
        V_b = Buf_A;
        Bready.signal();
    }
}
```

job done

only one A can proceed

only one B can proceed

here is my card
let me have yours

ready to proceed

job done
Third Attempt: Problem

<table>
<thead>
<tr>
<th>Thread A</th>
<th>Thread B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buf_A = ...</td>
<td>Buf_B = ...</td>
</tr>
<tr>
<td>Adone.signal()</td>
<td>Bdone.signal()</td>
</tr>
<tr>
<td>Bdone.wait()</td>
<td>Bdone.wait()</td>
</tr>
<tr>
<td>... = Buf_B</td>
<td>loops back</td>
</tr>
<tr>
<td>Aready.signal()</td>
<td>Aready.wait()</td>
</tr>
</tbody>
</table>

race condition

ruin the original value of Buf_A

B is a slow thread

watch for fast runners

loops back
What Did We Learn?

- Mutual exclusion for group A may not prevent processes in group B from interacting with a process in group A, and vice versa.
- It is common that we protect a shared item for one group and forget other possible, unintended accesses.
- Protection must be applied \textit{uniformly} to all processes rather than within groups.
Fourth Attempt

```c
sem Aready = Bready = 1; // ready to proceed
sem Adone = Bdone = 0;
int Buf_A, Buf_B;

T_A()
{
  int V_a;
  while (1) {
    Bready.wait();
    Buf_A = ..;
    Adone.signal();
    Bdone.wait();
    V_a = Buf_B;
    Aready.signal();
  }
}

T_B()
{
  int V_b;
  while (1) {
    Aready.wait();
    Buf_B = ..;
    Bdone.signal();
    Adone.wait();
    V_b = Buf_A;
    Bready.signal();
  }
}

sem Aready = Bready = 1;
sem Adone = Bdone = 0;
int Buf_A, Buf_B;
```

I am the only A

Bready.wait();
Buf_A = ..;
Adone.signal();
Bdone.wait();
V_a = Buf_B;
Aready.signal();

here is my card

Adone.signal();
Bdone.signal();

wait for yours

Bdone.wait();
Aready.wait();
V_b = Buf_A;
Bready.signal();

job done &

Adone.wait();
Bdone.signal();

next B please

what would happen if Aready=1 and Bready=0?
Fourth Attempt: Problem

<table>
<thead>
<tr>
<th>A₁</th>
<th>A₂</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bready.wait()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buf_A = ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adone.signal()</td>
<td></td>
<td>Buf_B = ...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bdone.signal()</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Adone.wait()</td>
</tr>
<tr>
<td></td>
<td></td>
<td>... = Buf_A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bready.signal()</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bready.wait()</td>
</tr>
<tr>
<td>......</td>
<td></td>
<td>Hey, this one is for A₁!!</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bdone.wait()</td>
</tr>
<tr>
<td></td>
<td></td>
<td>... = Buf_B</td>
</tr>
</tbody>
</table>
What Did We Learn?

- We use locks for mutual exclusion.
- The owner, the one who locked the lock, should unlock the lock.
- In the above “solution,” Aready is acquired by a process in A but released by a process in B. This is risky!
- In this case, a pure lock is more natural than a binary semaphore.
This message exchange problem is actually a variation of the producer-consumer problem.

A thread is a producer (resp., consumer) when it deposits (resp., retrieves) a message.

Therefore, a complete “message exchange” is simply a deposit followed by a retrieval.

We may use a buffer Buf_A (resp., Buf_B) for a thread in A (resp., B) to deposit a message for a thread in B (resp., A) to retrieve.
A Good Attempt: 2/7

- Based on this observation, we have the following. Does it work?

\[
\text{bounded_buffer} \quad \text{Buf}_A, \text{Buf}_B;
\]

\[
\text{Thread}_A(\ldots) \quad \text{Thread}_B(\ldots)
\]

\[
\{ \quad \{ \\
\text{int Var}_A; \quad \text{int Var}_B; \\
\text{while (1) \{ \quad \text{while (1) \{ \\
\ldots \quad \ldots \\
\text{PUT(Var}_A, \text{Buf}_A); \quad \text{PUT(Var}_B, \text{Buf}_B); \\
\text{GET(Var}_A, \text{Buf}_B); \quad \text{GET(Var}_B, \text{Buf}_A); \\
\ldots \quad \text{exchange message} \ldots \\
\} \quad \} \\
\}
\]
\]

34
• Unfortunately, this is an **incorrect** solution!

• Thread A_1’s message may be retrieved by thread B, and thread B’s message may be retrieved by thread A_2, a wrong message exchange!

<table>
<thead>
<tr>
<th>Thread A_1</th>
<th>Thread A_2</th>
<th>Thread B</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUT(Var_A,Buf_A)</td>
<td>PUT(Var_B,Buf_B)</td>
<td>PUT(Var_B,Buf_B)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GET(Var_B,Buf_A)</td>
</tr>
<tr>
<td>PUT(Var_A,Buf_A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GET(Var_A,Buf_B)</td>
<td></td>
<td>Buf_A is empty after this GET and A_2 can PUT</td>
</tr>
</tbody>
</table>
A Good Attempt: 4/7

- We may enforce mutual exclusion to avoid threads starting exchange messages at the same time.

```c
bounded_buffer Buf_A, Buf_B;
semaphore Mutex = 1;

Thread_A(…)
{
    int Var_A;
    while (1) {
        …
        Wait(Mutex);
        PUT(Var_A, Buf_A);
        GET(Var_A, Buf_B);
        Signal(Mutex);
        …
    }
}

Thread_B(…)
{
    int Var_B;
    while (1) {
        …
        Wait(Mutex);
        PUT(Var_B, Buf_B);
        GET(Var_B, Buf_A);
        Signal(Mutex);
        …
    }
}
```

Is this solution correct?
A Good Attempt: 5/7

Deadlock! Deadlock! Deadlock!

bounded_buffer Buf_A, Buf_B;
semaphore Mutex = 1;

Thread_A(…)
{
 int Var_A;
 while (1) {
 Wait(Mutex);
 PUT(Var_A, Buf_A);
 GET(Var_A, Buf_B);
 Signal(Mutex);
 }
}

Thread_B(…)
{
 int Var_B;
 while (1) {
 Wait(Mutex);
 PUT(Var_B, Buf_B);
 GET(Var_B, Buf_A);
 Signal(Mutex);
 }
}

if a thread passes PUT, it will be blocked by GET!

mutual exclusion
A Good Attempt: 6/7

- In fact, mutual exclusion does not have to extend to the other group as PUT and GET sync accesses.

```c
bounded_buffer Buf_A, Buf_B;
semaphore A_Mutex = 1, B_Mutex = 1;

Thread_A(...) {
    int Var_A;
    while (1) {
        ......
        Wait(A_Mutex);
        PUT(Var_A, Buf_A);
        GET(Var_A, Buf_B);
        Signal(A_Mutex);
        ......
    }
}

Thread_B(...) {
    int Var_B;
    while (1) {
        ......
        Wait(B_Mutex);
        PUT(Var_B, Buf_B);
        GET(Var_B, Buf_A);
        Signal(B_Mutex);
        ......
    }
}
```

... mutual exclusion for A

... mutual exclusion for B
A Good Attempt: 7/7

- Is this solution correct? Yes, it is!
- Before a thread in A finishes its message exchange (i.e., PUT and GET), no other threads in A can start a message exchange.
- If A_1 PUTs a message and B has a message available, it is impossible for any A_2 to retrieve B’s message.
- If A_2 can retrieve B’s message, A_2 must be in the critical section while A_1 is about to execute GET. This is impossible because A_1 is already in the critical section (i.e., A_{Mutex})!
Constructing A Solution: 1/5

This Is a Solution to the Bounded Buffer Problem

```
semaphore NotFull=n, NotEmpty=0, Mutex=1;

producer
while (1) {
    NotFull.wait();
    Mutex.wait();
    Buf[in] = x;
    in = (in+1)%n;
    Mutex.signal();
    NotEmpty.signal();
}

consumer
while (1) {
    NotEmpty.wait();
    Mutex.wait();
    x = Buf[out];
    out = (out+1)%n;
    Mutex.signal();
    NotFull.signal();
}
```

number of slots

notifications

critical section

This is a Solution to the Bounded Buffer Problem.
Constructing A Solution: 2/5

This Is a Solution to the Bounded Buffer Problem

Implementation:

```c
semaphore NotFull=1, NotEmpty=0, Mutex=1;

while (1) {
    NotFull.wait();
    Mutex.wait();
    Buf[in] = x;
    in = (in+1) % n;
    Mutex.signal();
    NotEmpty.signal();
}

while (1) {
    NotEmpty.wait();
    Mutex.wait();
    x = Buf[out];
    out = (out+1) % n;
    Mutex.signal();
    NotFull.signal();
}
```

- **producer**
- **consumer**

Key Points:

- Only one slot is needed.
- No need to update `in` and `out`.
- Critical section.
Constructing A Solution: 3/5

semaphore NotFull_A=1, NotEmpty_A=0, Mutex_A=1; // for Buf_A
semaphore NotFull_B=1, NotEmpty_B=0, Mutex_B=1; // for Buf_B
Semaphore Amutex = 1, Bmutex = 1;

while (1) {
 Wait(Amutex);
 Wait(NotFull_A);
 Wait(Mutex_A);
 Buf_A = Var_A;
 Signal(Mutex_A);
 Signal(NotEmpty_A);
 Wait(NotEmpty_B);
 Wait(Mutex_B);
 Var_A = Buf_B;
 Signal(Mutex_B);
 Signal(NotFull_B);
 Signal(Amutex);
}

PUT(Var_A, Buf_A);

while (1) {
 Wait(Bmutex);
 Wait(NotFull_B);
 Wait(Mutex_B);
 Buf_B = Var_B;
 Signal(Mutex_B);
 Signal(NotEmpty_B);
 Wait(NotEmpty_A);
 Wait(Mutex_A);
 Var_B = Buf_A;
 Signal(Mutex_A);
 Signal(NotFull_A);
 Signal(Bmutex);
}

GET(Var_A, Buf_B);

PUT(Var_B, Buf_B);

GET(Var_B, Buf_A);

There are 2 critical sections protected by Mutex_A and Mutex_B.

Are they needed?
semaphore NotFull_A=1, NotEmpty_A=0, Mutex_A=1;
semaphore NotFull_B=1, NotEmpty_B=0, Mutex_B=1;
Semaphore Amutex = 1, Bmutex = 1;

while (1) {
 Wait(Amutex);
 Wait(NotFull_A);
 Wait(Mutex_A);
 Buf_A = Var_A;
 Signal(Mutex_A);
 Signal(NotEmpty_A);
 Wait(NotEmpty_B);
 Wait(Mutex_B);
 Var_A = Buf_B;
 Signal(Mutex_B);
 Signal(NotFull_B);
 Signal(Amutex);
}

while (1) {
 Wait(Bmutex);
 Wait(NotFull_B);
 Wait(Mutex_B);
 Buf_B = Var_B;
 Signal(Mutex_B);
 Signal(NotEmpty_B);
 Wait(NotEmpty_A);
 Wait(Mutex_A);
 Var_B = Buf_A;
 Signal(Mutex_A);
 Signal(NotFull_A);
 Signal(Bmutex);
}

None of these two mutexes are needed.

Only one A can pass NotFull_A.
Only one B can pass NotFull_B.

A B can reach Mutex_A only after an A signals NotEmpty_A.

Hence, A and B cannot reach the same critical section Mutex_A at the same time.
Constructing A Solution: 5/5

Semaphore NotFull_A=1, NotEmpty_A=0;
Semaphore NotFull_B=1, NotEmpty_B=0;
Semaphore Amutex = 1, Bmutex = 1;

while (1) {
 Wait(Amutex);
 Wait(NotFull_A);
 Buf_A = Var_A;
 Signal(NotEmpty_A);
 Wait(NotEmpty_B);
 Var_A = Buf_B;
 Signal(NotFull_B);
 Signal(Amutex);
}

while (1) {
 Wait(Bmutex);
 Wait(NotFull_B);
 Buf_B = Var_B;
 Signal(NotEmpty_B);
 Wait(NotEmpty_A);
 Var_B = Buf_A;
 Signal(NotFull_A);
 Signal(Bmutex);
}

Hence, Mutex_A and Mutex_B can be removed.
This is a symmetric solution.
Think Differently: 1/3

1. A solution does not have to be symmetric.
2. Let A be active, and B be passive.
3. B waits for A’s message, gets it, and offers its message.
4. Then, A gets this (i.e., B’s) message.

Asymmetric Version

Semaphore Amutex = 1, Bmutex = 1;

while (1) {
 Wait(Amutex);
 PUT(Var_A, Buf_A);
 GET(Var_A, Buf_B);
 Signal(Amutex);
}

while (1) {
 Wait(Bmutex);
 GET(Temp, Buf_A);
 PUT(Var_B, Buf_B);
 Var_B = Temp;
 Signal(Bmutex);
}
Semaphore NotFull = 1;
Semaphore NotEmpty_A = 0, NotEmpty_B = 0;
Semaphore Amutex = 1, Bmutex = 1;

while (1) {
 Wait(Amutex);
 Wait(NotFull);
 Shared = Var_A;
 Signal(NotEmpty_A);
 Wait(NotEmpty_A);
 Temp = Shared;
 Shared = Var_B;
 Signal(NotEmpty_B);
 Wait(NotEmpty_B);
 Var_A = Shared;
 Signal(NotFull);
 Signal(Amutex);
}

while (1) {
 Wait(Bmutex);
 Wait(NotFull);
 Shared = Var_A;
 Signal(NotEmpty_A);
 Wait(NotEmpty_A);
 Temp = Shared;
 Shared = Var_B;
 Signal(NotEmpty_B);
 Wait(NotEmpty_B);
 Var_A = Shared;
 Signal(NotFull);
 Signal(Bmutex);
}
The symmetric solution has six statements in each critical section, and the asymmetric solution has four in `Thread_A()` ’s critical section and two in `Thread_B()` ’s.

Because statements in the asymmetric version are executed sequentially, there are six statements. In terms of statement count, both versions are similar.

Because the symmetric version has four waits and the asymmetric one has two, in terms of efficiency, the asymmetric version seems to be better.

On the other hand, because the message exchange sections are identical in both group, the symmetric version may be easier to understand.
What Did We Learn?

- The most important lesson is that classical problems (e.g., dining philosophers, producers-consumers and readers-writers) can serve as models to solve other problems.
- Many problems are variations or extensions of the classical problems.
- Thus, analyzing your work in hand and finding similarity with one or more classical problems is an important skill, so that you don’t have to reinvent the wheel.
Conclusions

- Detecting race conditions is difficult as it is an NP-hard problem.
- Hence, detecting race conditions is heuristic.
- Incorrect mutual exclusion is no better than no mutual exclusion.
- Race conditions are sometimes very subtle. They may appear at unexpected places.
The End