Part III
Synchronization
Race Conditions - Revisited

Let us change our traditional attitude to the construction of programs. Instead of imagining that our main task is to instruct a computer what to do, let us concentrate rather on explaining to human beings what we want a computer to do.

Donald Knuth
Catching Race Conditions: An Extremely Difficult Task

- **Statically** detecting race conditions exactly in a program using multiple semaphores is NP-hard.

- Thus, no efficient algorithms are available. We have to design programs properly and carefully, and use debugging skills wisely.

- It is virtually impossible to catch race conditions *dynamically* because hardware must examine *every* memory access.

- We shall use a few examples to illustrate some subtle race conditions.
Decision Problems: A *decision* problem is a problem that needs a **YES** or **NO** answer. By repeatedly answering decision problems, one can transform a non-decision problem to a sequence of decision problems.

Example 1: Given a set of positive integers, are there any even (or odd) numbers?

Example 2: Given a set of integers (positive, zero and negative), is there a subset that sums to zero? For example, in \{ 8, 4, 1, -3, -2, 9 \} the subset \{ 4, 1, -3, -2 \} sums to 0, and the answer is **YES**. The answer is **NO** with \{ 4, 2, -7, -3 \}.
P, NP and NP-Hard: 2/7

- **Class \(\mathcal{P} \) Problems**: If a problem \(L \) can be solved in *polynomial time*, \(L \) is in class \(\mathcal{P} \). This means if there is an algorithm that runs in polynomial time to find the answer, this problem is in \(\mathcal{P} \).

- **Example 1**: Is there an even/odd number in a set of \(n \) positive integers? You can easily design an algorithm to find the answer using \(O(n) \) comparisons.

- **Example 2**: Is a given array of \(n \) elements sorted? An \(O(n) \) algorithm is always possible.

- These are *solvable* problems.
Class NP Problems: Given a “solution” if we are able to \textbf{VERIFY} whether that “solution” is actually a solution in polynomial time, this is a \textbf{verifiable} problem.

Example: Given a set of distinct integers, can it be partitioned into two disjoint sets? Let the given set be \(S \) and let \(A \) and \(B \) be the two possible partitions. It is easily to verify if \(A \cup B = S \) and \(A \cap B = \emptyset \) in polynomial time.

If we are able to guess a solution to a problem \(L \) and verify it in polynomial time, \(L \) is in the \textbf{Non-deterministic Polynomial} class \(\mathcal{NP} \).
P, NP and NP-Hard: 4 of 7

- Obviously, the class P is a subset of class NP as a problem in P is already solvable in polynomial time, and, hence is in NP (i.e., $P \subseteq NP$).

- One of the biggest questions in computer science is whether $P = NP$ holds. If $P = NP$ holds, all problems have easily found solutions.

- This is one of the well-known Millennium Problems: See https://www.claymath.org/millennium-problems/p-vs-np-problem for the details.
P, NP and NP-Hard: 5/7

- **NP-Completeness.** A problem L is in the NP-Complete class if L is in NP and every problem H in NP is reducible (or convertible) to L in polynomial time.

- Thus, problems in NP-Complete are the hardest problems, and if one solves a NP-Complete problem, all NP-Complete problems are solved!

If $\mathcal{P} \neq \mathcal{NP}$:
P, NP and NP-Hard: 6/7

- **NP-Hardness**: A (decision) problem L is \(NP\)-Hard if every problem in \(NP\) is reducible (or convertible) to L. Note that L does not have to be in \(NP\).

\[\text{All Problems} \]

\[\text{NP} \]

\[\text{P} \]

\[\text{NP-Hard} \]

\[\text{NP-Complete} \]

if $P \neq NP$:
P, NP and NP-Hard: 7/7

- **NP-Hard** class contains those hardest problems that may not be in **NP**.
- The **NP-Complete** class contains those hardest problems in **NP**.

If $P \neq NP$:

- NP-Hard
- NP-Complete
- All Problems
Problem Statement

- Two groups, A and B, of processes exchange messages.
- Each process in A runs function $T_A()$, and each process in B runs function $T_B()$.
- Both $T_A()$ and $T_B()$ have an infinite loop and never stop.
- In the following, we show execution sequences that can cause race conditions. You may always find other execution sequences without race conditions.
Processes in group A

\text{T_A()} \\
\{ \\
\quad \text{while (1) \{} \\
\qquad \text{// do something} \\
\qquad \text{Ex. Message} \\
\qquad \text{// do something} \\
\quad \text{\}} \\
\} \\

Processes in group B

\text{T_B()} \\
\{ \\
\quad \text{while (1) \{} \\
\qquad \text{// do something} \\
\qquad \text{Ex. Message} \\
\qquad \text{// do something} \\
\quad \text{\}} \\
\}
What is “Exchange Message”?

- When a process in A makes a message available, it can continue only if it receives a message from a process in B who has successfully retrieved A’s message.

- Similarly, when a process in B makes a message available, it can continue only if it receives a message from a process in A who has successfully retrieved B’s message.

- How about exchanging business cards?
Watch for Race Conditions

- Suppose process A_1 presents its message for B to retrieve. If A_2 comes for message exchange before B can retrieve A_1’s, will A_2’s message overwrites A_1’s?

- Suppose B has already retrieved A_1’s message. Is it possible that when B presents its message, A_2 picks it up rather than by A_1?

- Thus, the messages between A and B must be well-protected to avoid race conditions.
First Attempt

sem A = 0, B = 0;
int Buf_A, Buf_B;

T_A()
{
 int V_a;
 while (1) {
 V_a = ..;
 B.signal();
 A.wait();
 Buf_A = V_a;
 V_a = Buf_B;
 }
}

T_B()
{
 int V_b;
 while (1) {
 V_b = ..;
 A.signal();
 B.wait();
 Buf_B = V_b;
 V_b = Buf_A;
 }
}

I am ready

Wait for your card!
First Attempt: Problem (a)

<table>
<thead>
<tr>
<th>Thread A</th>
<th>Thread B</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>B.signal()</code></td>
<td></td>
</tr>
<tr>
<td><code>A.wait()</code></td>
<td><code>A.signal()</code></td>
</tr>
<tr>
<td><code>Buf_A = V_a</code></td>
<td><code>B.wait()</code></td>
</tr>
<tr>
<td><code>V_a = Buf_B</code></td>
<td></td>
</tr>
<tr>
<td><code>Buf_B</code> has no value, yet!</td>
<td><code>Oops, it is too late!</code></td>
</tr>
<tr>
<td></td>
<td><code>Buf_B = V_b</code></td>
</tr>
</tbody>
</table>
First Attempt: Problem (b)

<table>
<thead>
<tr>
<th></th>
<th>A₂</th>
<th>B₁</th>
<th>B₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>A₁</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.signal()</td>
<td></td>
<td>A.signal()</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.wait()</td>
<td></td>
</tr>
<tr>
<td>B.signal()</td>
<td></td>
<td>B.signal()</td>
<td></td>
</tr>
<tr>
<td>A.wait()</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.wait()</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buf_A = .</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Race Condition
What Did We Learn?

- If there are shared data items, always protect them properly. Without a proper mutual exclusion, race conditions are likely to occur.
- In this first attempt, both global variables Buf_A and Buf_B are shared and should be protected.
Second Attempt

```
sem A = B = 0;
sem Mutex = 1;
int Buf_A, Buf_B;

T_A()
{ int V_a;
  while (1) {
    B.signal();
    A.wait();
    Mutex.wait();
    Buf_A = V_a;
    Mutex.signal();
    B.signal();
    A.wait();
    Mutex.wait();
    V_a = Buf_B;
    Mutex.signal();
  }
}

T_B()
{ int V_b;
  while (1) {
    A.signal();
    B.wait();
    Mutex.wait();
    Buf_B = V_b;
    Mutex.signal();
    A.signal();
    B.wait();
    Mutex.wait();
    V_b = Buf_A;
    Mutex.signal();
  }
}
```
Second Attempt: Problem

<table>
<thead>
<tr>
<th>A₁</th>
<th>A₂</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.signal()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.wait()</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Race condition

Buf_A = ..

<table>
<thead>
<tr>
<th>A₁</th>
<th>A₂</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A.signal()</td>
</tr>
<tr>
<td></td>
<td>B.wait()</td>
<td></td>
</tr>
</tbody>
</table>

Buf_B = ..

<table>
<thead>
<tr>
<th>A₁</th>
<th>A₂</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.signal()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.wait()</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A₁</th>
<th>A₂</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A.signal()</td>
</tr>
<tr>
<td></td>
<td>B.wait()</td>
<td></td>
</tr>
</tbody>
</table>

Buf_A = ..

Hand shaking with a wrong person
What Did We Learn?

- Improper protection is no better than no protection, because it gives us an *illusion* that data have been well-protected.

- We frequently forget that protection is done by a critical section, which *cannot be divided*. That is, execution in the protected critical section must be atomic.

- Thus, protecting “*here is my card*” followed by “*may I have yours*” separately is not a good idea.

Third Attempt

```c
sem Aready = Bready = 1;        // ready to proceed
sem Adone = Bdone = 0;
int Buf_A, Buf_B;

T_A()
{
    int V_a;
    while (1) {
        Aready.wait();
        Buf_A = ..;
        Adone.signal();
        Bdone.wait();
        V_a = Buf_B;
        Aready.signal();
    }
}

T_B()
{
    int V_b;
    while (1) {
        Bready.wait();
        Buf_B = ..;
        Bdone.signal();
        Adone.wait();
        V_b = Buf_A;
        Bready.signal();
    }
}
```

only one A can proceed

job done

only one B can proceed
Third Attempt: Problem

Table:

<table>
<thead>
<tr>
<th>Thread A</th>
<th>Thread B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buf_A = ...</td>
<td>Buf_B = ...</td>
</tr>
<tr>
<td>Adone.signal()</td>
<td>Bdone.signal()</td>
</tr>
<tr>
<td>Bdone.wait()</td>
<td>Bdone.signal()</td>
</tr>
<tr>
<td></td>
<td>Adone.wait()</td>
</tr>
<tr>
<td>... = Buf_B</td>
<td></td>
</tr>
<tr>
<td>Aready.signal()</td>
<td></td>
</tr>
<tr>
<td>loops back</td>
<td></td>
</tr>
<tr>
<td>Aready.wait()</td>
<td></td>
</tr>
<tr>
<td>Buf_A = ...</td>
<td></td>
</tr>
<tr>
<td>race condition</td>
<td>... = Buf_A</td>
</tr>
</tbody>
</table>

ruin the original value of Buf_A

watch for fast runners

B is a slow thread
What Did We Learn?

- Mutual exclusion for group A may not prevent processes in group B from interacting with a process in group A, and vice versa.
- It is common that we protect a shared item for one group and forget other possible, unintended accesses.
- Protection must be applied *uniformly* to all processes rather than within groups.
Fourth Attempt

```c
sem  Aready = Bready = 1;  // ready to proceed
sem  Adone = Bdone = 0;
int  Buf_A, Buf_B;

T_A()
{
    int V_a;
    while (1) {
        Bready.wait();
        Buf_A = ..;
        Adone.signal();
        Bdone.wait();
        V_a = Buf_B;
        Aready.signal();
    }
}

T_B()
{
    int V_b;
    while (1) {
        Aready.wait();
        Buf_B = ..;
        Bdone.signal();
        Adone.wait();
        V_b = Buf_A;
        Bready.signal();
    }
}

sem  Aready = Bready = 1;
sem  Adone = Bdone = 0;
int  Buf_A, Buf_B;

I am the only A

Bready.wait();
Buf_A = ..;
Adone.signal();
Bdone.signal();
Bready.wait();
V_a = Buf_B;
Aready.signal();

here is my card
Adone.signal();
Bdone.signal();

wait for yours
Bdone.wait();
Adone.wait();
V_b = Buf_A;
Bready.signal();

job done &
next B please
Aready.signal();
Bready.signal();

what would happen if Aready=1 and Bready=0?
Fourth Attempt: Problem

<table>
<thead>
<tr>
<th></th>
<th>A₂</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bready.wait()</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buf_A = ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adone.signal()</td>
<td>Bu_B = ...</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bdone.signal()</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adone.wait()</td>
<td></td>
</tr>
<tr>
<td></td>
<td>... = Buf_A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bready.signal()</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bready.wait()</td>
<td></td>
</tr>
<tr>
<td></td>
<td>......</td>
<td>Hey, this one is for A₁!!</td>
</tr>
<tr>
<td></td>
<td>Bdone.wait()</td>
<td></td>
</tr>
<tr>
<td></td>
<td>... = Buf_B</td>
<td></td>
</tr>
</tbody>
</table>
What Did We Learn?

- We use locks for mutual exclusion.
- The owner, the one who locked the lock, should unlock the lock.
- In the above “solution,” A ready is acquired by a process in A but released by a process in B. This is risky!
- In this case, a pure lock is more natural than a binary semaphore.
This message exchange problem is actually a variation of the producer-consumer problem.

A thread is a producer (resp., consumer) when it deposits (resp., retrieves) a message.

Therefore, a complete “message exchange” is simply a deposit followed by a retrieval.

We may use a buffer $\text{Buf}_A$ (resp., $\text{Buf}_B$) for a thread in $A$ (resp., $B$) to deposit a message for a thread in $B$ (resp., $A$) to retrieve.
A Good Attempt: 2/7

- Based on this observation, we have the following. **Does it work?**

```c
bounded_buffer Buf_A, Buf_B;

Thread_A(...) {
 int Var_A;
 while (1) {
 …
 PUT(Var_A, Buf_A);
 GET(Var_A, Buf_B);
 …
 }
}

Thread_B(...) {
 int Var_B;
 while (1) {
 …
 PUT(Var_B, Buf_B);
 GET(Var_B, Buf_A);
 …
 }
}
```

exchange message …
A Good Attempt: 3/7

- Unfortunately, this is an *incorrect* solution!
- Thread $A_1$’s message may be retrieved by thread $B$, and thread $B$’s message may be retrieved by thread $A_2$, a wrong message exchange!

<table>
<thead>
<tr>
<th>Thread $A_1$</th>
<th>Thread $A_2$</th>
<th>Thread $B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PUT($Var_A$, $Buf_A$)</td>
<td>PUT($Var_B$, $Buf_B$)</td>
<td>GET($Var_B$, $Buf_A$)</td>
</tr>
<tr>
<td>PUT($Var_A$, $Buf_A$)</td>
<td>GET($Var_A$, $Buf_B$)</td>
<td>$Buf_A$ is empty after this GET and $A_2$ can PUT</td>
</tr>
</tbody>
</table>
We may enforce mutual exclusion to avoid threads starting exchange messages at the same time.

```
bounded_buffer Buf_A, Buf_B;
semaphore Mutex = 1;

Thread_A(…)
{
 int Var_A;
 while (1) {

 Wait(Mutex);
 PUT(Var_A, Buf_A);
 GET(Var_A, Buf_B);
 Signal(Mutex);
 mutual exclusion
 }
}

Thread_B(…)
{
 int Var_B;
 while (1) {

 Wait(Mutex);
 PUT(Var_B, Buf_B);
 GET(Var_B, Buf_A);
 Signal(Mutex);

 }
}
```

Is this solution correct?
A Good Attempt: 5/7

- Deadlock! Deadlock! Deadlock!

```c
bounded_buffer Buf_A, Buf_B;
semaphore Mutex = 1;

Thread_A(...) {
 int Var_A;
 while (1) {

 Wait(Mutex);
 PUT(Var_A, Buf_A);
 GET(Var_A, Buf_B);
 Signal(Mutex);

 }
}

Thread_B(...) {
 int Var_B;
 while (1) {

 Wait(Mutex);
 PUT(Var_B, Buf_B);
 GET(Var_B, Buf_A);
 Signal(Mutex);

 }
}
```

If a thread passes `PUT`, it will be blocked by `GET`!
A Good Attempt: 6/7

- In fact, mutual exclusion does not have to extend to the other group as PUT and GET sync accesses.

```c
bounded_buffer Buf_A, Buf_B;
semaphore A_Mutex = 1, B_Mutex = 1;

Thread_A(...) {
 int Var_A;
 while (1) {

 Wait(A_Mutex);
 PUT(Var_A, Buf_A);
 GET(Var_A, Buf_B);
 Signal(A_Mutex);
 mutual exclusion for A
 }
}

Thread_B(...) {
 int Var_B;
 while (1) {

 Wait(B_Mutex);
 PUT(Var_B, Buf_B);
 GET(Var_B, Buf_A);
 Signal(B_Mutex);
 mutual exclusion for B
 }
}
```
A Good Attempt: 7/7

- Is this solution correct? Yes, it is!
- Before a thread in A finishes its message exchange (i.e., PUT and GET), no other threads in A can start a message exchange.
- If $A_1$ PUTs a message and $B$ has a message available, it is impossible for any $A_2$ to retrieve $B$’s message.
- If $A_2$ can retrieve $B$’s message, $A_2$ must be in the critical section while $A_1$ is about to execute GET. This is impossible because $A_1$ is already in the critical section!
What Did We Learn?

- The most important lesson is that classical problems (e.g., dining philosophers, producers-consumers and readers-writers) can serve as models to solve other problems.
- Many problems are variations or extensions of the classical problems.
- Check ThreadMentor’s tutorial pages for simplified solutions using bounded buffers.
Conclusions

- Detecting race conditions is difficult as it is an **NP-hard** problem.
- Hence, detecting race conditions is heuristic.
- Incorrect mutual exclusion is no better than no mutual exclusion.
- Race conditions are sometimes very subtle. They may appear at unexpected places.
The End