Part IV

Other Systems: I

Java Threads

Unfortunately, Java replaced the secure monitor concept of Concurrent Pascal with insecure shortcuts.

Per Brinch Hansen
Java Threads: 1/6

- Java has two ways to create threads:
 - Create a new class derived from the `Thread` class and overrides its `run()` method. This is similar to that of `ThreadMentor`.
 - Define a class that implements the `Runnable` interface.
Java Threads: 2/6

Method #1: Use the `Thread` class

```java
public class HelloThread extends Thread {
    public void run() {
        System.out.println("Hello World");
    }
    public static void main(String[] args) {
        HelloThread t = new HelloThread();
        t.start();
    }
}
```
Method #2: Use the Runnable interface defined as follows:

```java
public interface Runnable {
    public abstract void run();
}
```
class A {
 String name;
 public A(String s) { name = s; }
 public void setName(String s) { name = s; }
 public String getName() { return name; }
}

class AA extends A implements Runnable {
 public AA(String s) { super(s); }
 public void run() {
 for (int i = 0; i < 10; i++)
 System.out.println(getName()+": Hello World");
 }
 public static void main(String[] args) {
 AA f1 = new AA("Romeo");
 Thread t1 = new Thread(f1); t1.start();
 AA f2 = new AA("Juliet");
 Thread t2 = new Thread(f2); t2.start();
 }
}
public class Fibonacci extends Thread {
 int n, result;
 public Fibonacci(int n) { this.n = n; }
 public void run() {
 if ((n == 0) || (n == 1))
 result = 1;
 else {
 Fibonacci f1 = new Fibonacci(n-1);
 Fibonacci f2 = new Fibonacci(n-2);
 f1.start(); f2.start();
 try {
 f1.join(); f2.join();
 } catch (InterruptedException e) {};
 result = f1.getResult()+f2.getResult();
 }
 }
 public int getResult() { return result; }
}
Java Threads: 6/6

```java
public static void main(String[] args) {
    Fibonacci f1 =
        new Fibonacci(Integer.parseInt(args[0]));
    f1.start();
    try {
        f1.join();
    } catch (InterruptedException e) {};
    System.out.println("Ans = " + f1.getResult());
}
```

Part 2/2

Note that this is a very inefficient way to compute Fibonacci numbers. More on this at the end of this lecture.
The synchronized Keyword

- The `synchronized` keyword of a block implements mutual exclusion.

```java
public class Counter{
    private int count = 0;
    public int inc()
    {
        synchronized(this){
            return ++count;
        }
    }
}
```

this is a critical section
A lock provides exclusive access to a shared resource: only one thread at a time can acquire the lock and all access to the shared resource requires that the lock be acquired first.

A `ReentrantLock` is like the `synchronized` keyword, but the former has an acquisition count.

The lock holder can acquire the same lock again and the acquisition count is increased by one, and the lock holder must release the lock twice.

Use `lock()` to acquire a lock and `unlock()` to release a lock.
The following is a typical use of locks in Java.

```java
Lock myLock = new ReentrantLock();

myLock.lock();  // acquire a lock
try {
    // in critical section now
    // catch exceptions and
    // restore invariants if needed
} finally {
    myLock.unlock();
}
```
Java `wait()` and `notify()`: 1/8

- Java has something like the monitor concept.
- Threads that access a common object share a lock, which is usually implemented by `synchronized`.
- A thread that wants to use a common object must acquire the lock associated with that object. This is the mutual exclusion of a monitor.
- After using a common object, a thread must release (i.e., unlock) the object.
- The common object, which is usually a class, can be considered as a monitor.
Java `wait()` and `notify()`: 2/8

- Java uses `wait()` to wait on an event.
- Java uses `notify()` or `notifyAll()` to indicate that an event has happened.
- Basically, Java **does not** have the `condition` type, and a programmer must “simulate” an event.
- Java uses the Mesa type monitor.
Java `wait()` and `notify()`: 3/8

- `wait()` causes the caller to release the lock.
- `wait()` should always be wrapped in a `try` block because it throws `InterruptedException`.
- `wait()` can only be invoked by the thread that owns the lock on the object (i.e., monitor).
- The thread that calls `wait()` becomes `waiting` until it is notified.
- A released thread from `wait()` is `inactive` until it can reacquire the needed lock.
- When this thread can get the lock back (i.e., `active`) is determined by the lock mechanism.
Java `wait()` and `notify()`: 4/8

- A thread calls `notify()` to release a waiting thread or `notifyAll()` to release all waiting threads and continues its execution (the Mesa type).
- The released threads become **inactive** and wait until the object’s lock will become available.
- Whether an **inactive** thread can reacquire the lock again immediately is determined by the lock mechanism.
- Using `notify()` and `notifyAll()` as the last statement can avoid many potential problems.
public class Counter implements BoundedCounter {
 protected long count = MIN;
 public synchronized long value() { return count; }
 public synchronized long inc()
 { awaitINC(); setCount(count+1); }
 public synchronized long dec()
 { awaitDEC(); setCount(count-1); }
 protected synchronized void setCount(long newVal)
 { count = newVal; notifyAll(); }
 protected synchronized void awaitINC()
 { while (count >= MAX)
 try { wait();} catch(InterruptedException e){};
 }
 protected synchronized void awaitDEC()
 { while (count <= MIN)
 try { wait();} catch(InterruptedException e){};
 }
}
public class Buffer implements BoundedBuffer {
 protected Object[] buffer;
 protected int in;
 protected int out;
 protected int count;
 public Buffer(int size)
 throws IllegalArgumentException {
 if (size <= 0)
 throw new IllegalArgumentException();
 buffer = new Object[size];
 }
 public int GetCount() { return count; }
 public int capacity() { return Buffer.length; }
 // methods put() and get()
Java `wait()` and `notify()`: 7/8

```java
public synchronized void put(Object x) {
    while (count == Buffer.length)
        try { wait(); } 
        catch(InterruptedException e) {};
    Buffer[in] = x;
    in = (in + 1) % Buffer.length;
    if (count++ == 0)
        notifyAll();
}
```

Part 2/3
Java `wait()` and `notify()` : 8/8

```java
public synchronized void get(Object x) {
    while (count == 0)
        try { wait(); }
        catch (InterruptedException e) {};
    Object x = Buffer[out];
    Buffer[out] = null;
    out = (out + 1) % Buffer.length;
    if (count-- == Buffer.length)
        notifyAll();
    return x;
}
```

Part 3/3
The `java.util.concurrent.Semaphore` class is a counting semaphore.

To use this semaphore type, you need to do this:

```java
import java.util.concurrent.Semaphore;
```

There are more on concurrent programming in `java.util.concurrent.*`.
Java Semaphores: 2/7

- The semaphore counter in a Java semaphore is referred to as permits.

- There are two constructors:
 - `Semaphore(int permits)`: Creates a Semaphore with the given number of permits and nonfair fairness.
 - `Semaphore(int permits, Boolean fair)`: Creates a Semaphore with the given number of permits and the given fairness setting (i.e., `TRUE = first-in-first-out`).
Java Semaphores: 3/7

- There are several methods in the `Semaphore` class.
- However, we only mention a few.
- The `acquire()` methods (i.e., `wait()`):
 - `acquire()` : Acquires a permit from this semaphore, blocking until one is available, or the caller is interrupted.
 - `acquire(int permits)` : Acquires the given number of permits from this semaphore, blocking until all permits are available, or the caller is interrupted.
- `acquire()` should always be wrapped in a `try-catch (InterruptedException)` block.
Java Semaphores: 4/7

- The Uninterruptibly forms of acquire() are available. They are similar to the conventional wait().

- The acquireUninterruptibly() methods (i.e., wait()):
 - acquireUninterruptibly() : Acquires a permit from this semaphore, blocking until one is available, or the caller is interrupted.
 - acquireUninterruptibly(int permits) : Acquires the given number of permits from this semaphore, blocking until all permits are available, or the caller is interrupted.
The `release()` methods (i.e., `signal()`) are as follows:

- `release()` : Releases a permit, returning it to the semaphore.
- `release(int permits)` : Releases the given number of permits, returning them to the semaphore.
Let us revisit the Dining Philosophers problem again with a minor twist:

➢ All five chopsticks are placed at the center of the table.

➢ Each philosopher must get two chopsticks to eat.

➢ If a philosopher get the needed chopsticks one by one, deadlock can happen. (Why?)

➢ Thus, each philosopher must get BOTH chopsticks at the same time.
Java Semaphores: 7/7

```java
import java.util.concurrent.Semaphore;

Semaphore Chops(5); // five chopsticks

for each philosopher

while (1) {
    // thinking
    try { Chops.acquire(2); } // getting 2 chops
    catch (InterruptedException e) { };
    // eating
    Chops.release(2);
}
```

Because hold-and-wait fails, this solution is deadlock-free
Efficient Computation of Fibonacci Numbers
The method used on Slide 6 is very inefficient.

How inefficient is it?

Let f_n be the n-th Fibonacci number with $f_1 = f_2 = 1$, and t_n be the number of additions to compute f_n.

The program on Slide 6 computes f_{n+1} with two threads, one computing f_n with t_n additions and the other computing f_{n-1} with t_{n-1} additions.

Therefore, we have

$$t_{n+1} = t_n + t_{n-1} + 1$$

for f_n, for f_{n-1}, for $f_n + f_{n-1}$.
In fact, we have \(t_n = f_n - 1 \).

<table>
<thead>
<tr>
<th>(f_n)</th>
<th>(t_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_1 = 1)</td>
<td>(t_1 = 0)</td>
</tr>
<tr>
<td>(f_2 = 1)</td>
<td>(t_2 = 0)</td>
</tr>
<tr>
<td>(f_3 = f_2 + f_1 = 2)</td>
<td>(t_3 = t_2 + t_1 + 1 = 0 + 0 + 1 = 1 = f_3 - 1)</td>
</tr>
<tr>
<td>(f_4 = f_3 + f_2 = 3)</td>
<td>(t_4 = t_3 + t_2 + 1 = 1 + 0 + 1 = 2 = f_4 - 1)</td>
</tr>
<tr>
<td>(f_5 = f_4 + f_3 = 5)</td>
<td>(t_5 = t_4 + t_3 + 1 = 2 + 1 + 1 = 4 = f_5 - 1)</td>
</tr>
</tbody>
</table>
This identity \(t_n = f_n - 1 \) can be proven easily with the mathematical induction method.

BASE CASE: It is obvious for \(n = 1 \) or 2.

INDUCTION: Now assume that \(t_n = f_n - 1 \) holds for 1,...,\(n \). Because we know \(t_{n+1} = t_n + t_{n-1} + 1 \), \(t_n = f_n - 1 \) and \(t_{n-1} = f_{n-1} - 1 \), we have the following:

\[
\begin{align*}
 t_{n+1} &= t_n + t_{n-1} + 1 \\
 &= (f_n - 1) - (f_{n-1} - 1) + 1 \\
 &= (f_n + f_{n-1}) - 1 \\
 &= f_{n+1} - 1
\end{align*}
\]

Can we obtain \(f_n \) and hence \(t_n \) explicitly?
Fibonacci Numbers: 4/15

- Define ϕ and ψ as follows:

$$\phi = \frac{1 + \sqrt{5}}{2} \quad \psi = \frac{1 - \sqrt{5}}{2}$$

- Then, f_n can be computed directly as follows:

$$f_n = \frac{\phi^n - \psi^n}{\sqrt{5}} = \left[\frac{\phi^n}{\sqrt{5}} + \frac{1}{2} \right]$$

- Thus, f_n increases exponentially. In other word, t_n is of order $O(\phi^n)$! Thus, using the way on Slide 6 to compute Fibonacci numbers is very slow!
Fibonacci Numbers: f_{40}

$$f_n = \frac{\phi^n - \psi^n}{\sqrt{5}} = \left\lfloor \frac{\phi^n}{\sqrt{5}} + \frac{1}{2} \right\rfloor$$

$$f_{40} = 102,334,155$$
You perhaps know this $O(n)$ method.

```c
unsigned long Fibonacci(int n)
{
    unsigned long  previous, this, result;
    int  i;

    if (n == 0 || n == 1)
        return 1;
    else {
        previous = 0; this = 1;
        for (i = 2; i <= n; i++) {
            result   = previous + this;
            previous = this;
            this     = result;
        }
    }
    return result;
}
```
Fibonacci Numbers: 7/15

- Can we do better (i.e., faster than $O(n)$)?
- **YES**, we need to do a bit more.
- Let us learn how to compute x^n fast where x and n are positive integers.

\[
x^n = \begin{cases}
1 & \text{if } n = 0 \\
(x^k)^2 & \text{if } n = 2k \text{ (even)} \\
x \cdot x^{2k} & \text{if } n = 2k + 1 \text{ (odd)}
\end{cases}
\]

if the exponent is even, compute $x^{n/2}$ and square the result

if the exponent is odd, compute x^{n-1} (even) and multiply x to the result
The following is a possible implementation:

```c
unsigned long Recursive_Power(unsigned long x, unsigned long n) {
    unsigned long temp;
    if (n == 0) // x^0 = 1
        return 1;
    else if (n & 0x01UL == 0) { // if n is even
        temp = Recursive_Power(x, n >> 1);
        return temp*temp;
    }
    else // if n is odd
        return x * Recursive_Power(x, n-1);
}
```

This implementation is $O(\log_2(n))$ because of this!
The following expression is crucial:
\[
\begin{bmatrix}
 f_{n+1} \\
 f_n
\end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} f_n \\ f_{n-1} \end{bmatrix}
\]

Therefore, we have the following:
\[
\begin{bmatrix}
 f_{n+1} \\
 f_n
\end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} f_1 \\ f_0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^n \begin{bmatrix} 1 \\ 0 \end{bmatrix}
\]

Hence, computing \(f_{n+1} \) is equivalent to raising a 2x2 matrix to its \(n \)-th power.

Because \(x^n \) can be done in the order of \(O(\log_2(n)) \), raising a 2x2 matrix to its \(n \)-th power is also \(O(\log_2(n)) \).
Assume that each recursion requires 100-fold of the time of executing a single addition.

Around $n \geq 1100$, $O(\log_2(n))$ is smaller than $O(n)$.

$n \approx 1,100$

Multiplying two 2x2 matrices requires 8 multiplications and 4 additions.
Fibonacci Numbers: 11/15

- Can we remove recursion?
- **YES**, it is a little tricky but not difficult!
- We need to convert the n in x^n to binary.
- Consider $45_{10} = 101101_2$ and x^{45}.

\[
x^{45} = x^{101101_2}
= x \cdot 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0
= (x^{2^5}) \cdot (1) \cdot (x^{2^3}) \cdot (x^{2^2}) \cdot (1) \cdot (x^{2^0})
= (x^{25}) \cdot (x^{23}) \cdot (x^{22}) \cdot (x^{20})
\]
Fibonacci Numbers: 12/15

- The binary representation of the \(n \) in \(x^n \) provides selectors indicating which exponents should be included: \(1 \) – YES and \(0 \) – NO.
- In \(45_{10} = 101101_2 \), \(2^5 \), \(2^3 \), \(2^2 \) and \(2^0 \) are included.
Fibonacci Numbers: 13/15

- We need to compute x^0, x^1, x^2, x^4, x^8, etc.
- The included x^k’s are multiplied together.
- In each step, the next $(x^k)^2$ is computed.
- If this power is included, multiply it to the product.

<table>
<thead>
<tr>
<th>$p^*(x^k)^2$</th>
<th>p</th>
<th>$....$</th>
<th>x^4</th>
<th>x^2</th>
<th>x</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(x^k)^2$</td>
<td>x^k</td>
<td>$....$</td>
<td>x^4</td>
<td>x^2</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>0 or 1</td>
<td>$....$</td>
<td>0 or 1</td>
<td>0 or 1</td>
<td>0 or 1</td>
</tr>
</tbody>
</table>

Scan the binary representation from the low-order bit.

1 means the power term $(x^k)^2$ should be included.
Here is a possible implementation. It is simple!

If your system can detect integer overflow, this solution won’t work. How would you fix it?

```c
unsigned long Power(unsigned long x, unsigned long n)
{
    unsigned long temp, power;

    temp = 1;
    power = x;
    while (n > 0) {
        if (n & 0x01UL == 1) // last bit = 1?
            temp = temp * power; // include this power
        power = power * power; // compute x^{2k}
        n >> 1; // shift to the right
    }
    return temp;
}
```
The worst case is $n = 11111\ldots111_2$ (all 1s).

In this case, all power terms x^k must be computed and multiplied to the result.

Each iteration requires **two** multiplications.

Because there are k bits, $2\times k$ multiplications are needed.

Because k is $O(\log_2(n))$, the complexity of this algorithm is $O(\log_2(n))$ and is faster than the recursive implementation.
The End