
CS3331 Concurrent Computing Exam I Solutions – Fall 2020 1

CS3331 Concurrent Computing Exam I Solutions

Fall 2020

1. Practice

(a) [10 points] In Programming Assignment I you were asked to write a program using the long type to

compute the factorials of 1!, 2!, 3!, . . ., 25!. Answer the following questions as accurate as possible. Vague

answers receive no point.

i. [3 points] What were your findings?

ii. [7 points] Provide a detailed discussion to explain why you get the results in Problem 1(a)i.

Answer: The following has the answer to both questions together.

Question (i): Your program output should look like the following if you ran your program on an Intel-

based CPU (i.e., a CS lab machine):

0! = 1

1! = 1

2! = 2

3! = 6

4! = 24

5! = 120

6! = 720

7! = 5040

8! = 40320

9! = 362880

10! = 3628800

11! = 39916800

12! = 479001600

13! = 6227020800

14! = 87178291200

15! = 1307674368000

16! = 20922789888000

17! = 355687428096000

18! = 6402373705728000

19! = 121645100408832000

20! = 2432902008176640000

21! = -4249290049419214848

22! = -1250660718674968576

23! = 8128291617894825984

24! = -7835185981329244160

25! = 7034535277573963776

The C language has the minimum and maximum of each type declared in the header file limits.h.

On my MacBook Air/Pro, Mac Mini and iMac Pro under gcc, the minimum and maximum values of

the long int type, which are the same as the long long int type, are -9223372036854775808 and

9223372036854775807, respectively. This is, of course, machine and compiler dependent.

Your findings should include the following: (1) up to 20! the output looks reasonable and correct, (2) 21!

turns to be negative (which should not be the case), and (3) looking further down 25! is smaller than 23!.

These are all odd things.

Question (ii): There was no programming error and there was no interrupt due to these strange phenomena,

because unlike floating-point arithmetic, integer overflow and underflow do not cause interrupts. When

multiplying two large integers with binary arithmetic, if the result cannot fit into a register, the stored result

only includes the least significant bits. More precisely, if we use k +1 bits for signed integer computation

with 1 sign bit, the minimum and maximum are likely to be −2k− 1 and 2k− 1, respectively. If the

computed result is larger than 2k− 1, only the last k bits would be stored. This is usually referred to as

wrapping.

For example, suppose we use a 4-bit register for multiplication. Then, multiplying 01102 = 610 and

01012 = 510 yields 3010 = 111102. Because we only use a 4-bit register for computation, the stored

result would be the last 4 bits 11102. However, because we use signed integers, the first bit is the sign bit

CS3331 Concurrent Computing Exam I Solutions – Fall 2020 2

(i.e., 0 positive and 1 negative), and 11102 actually means −210 in the 2’s complement representation.

Note that different computer architectures could produce different results.

In summary, the main reason of getting negative results and non-decreasing results (i.e., (k + h)! < k!

where h is a positive integer) in the process of computing n! is just because integer overflow could make

the sign bit 1. This concept should have been covered in your computer organization or a similar course.

2. Basic Concepts

(a) [10 points] What are the CPU modes? Explain their uses. How does the CPU know what mode it is in?

There are three questions.

Answer: The following has the answers.

• CPU modes are operating modes of the CPU. Modern CPUs have two execution modes: the user

mode and the supervisor (or system, kernel, privileged) mode, controlled by a mode bit.

• The OS runs in the supervisor mode and all user programs run in the user mode. Some instructions

that may do harm to the OS (e.g., I/O and CPU mode change) are privileged instructions. Privileged

instructions, for most cases, can only be used in the supervisor mode. When execution switches to the

OS (resp., a user program), execution mode is changed to the supervisor (resp., user) mode.

• A mode bit can be set by the operating system, indicating the current CPU mode.

See page 5 of 02-Hardware-OS.pdf.

(b) [10 points] Define interrupts and traps, and provide a detailed account of the procedure that an operating

system handles an interrupt. There are two questions.

Answer: An interrupt is an event that requires the attention of the operating system. These events include

the completion of an I/O, a key press, the alarm clock going off, division by zero, accessing a memory

area that does not belong to the running program, and so on. Interrupts may be generated by hardware or

software. A trap is an interrupt generated by software (e.g., division by 0 and system call).

When an interrupt occurs, the following steps will take place to handle the interrupt:

• The executing program is suspended and control is transferred to the operating system. Mode switch

may be needed.

• A general routine in the operating system examines the received interrupt and calls the corresponding

interrupt-specific handler.

• After the interrupt is processed, a context switch transfers control back to a suspended process and

resumes its execution. Of course, mode switch may be needed. Note that the resumed process may

not be the suspended one due to this interrupt.

See pp. 6–7 of 02-Hardware-OS.pdf.

3. Processes

(a) [10 points] Draw the state diagram of a process from its creation to termination, including all transitions.

Make sure you will elaborate every state and every transition in the diagram.

Answer: The following state diagram is taken from my class note.

There are five states: new, ready, running, waiting, and terminated.

• New: The process is being created.

• Ready: The process has everything but the CPU, and is waiting to be assigned to a processor.

• Running: The process is executing on a CPU.

• Waiting: The process is waiting for some event to occur (e.g., I/O completion or some resource).

• Terminated: The process has finished execution.

The transitions between states are as follows:

• New→Ready: The process has been created and is ready to run.

• Ready→Running: The process is selected by the CPU scheduler and runs on a CPU/core.

• Running→Ready: An interrupt has occurred forcing the process to wait for the CPU.

CS3331 Concurrent Computing Exam I Solutions – Fall 2020 3

• Running→Waiting: The process must wait for an event (e.g., I/O completion or a resource).

• Waiting→Ready: The event the process is waiting has occurred, and the process is now ready for

execution.

• Running→Terminated: The process exits.

See pp. 5–6 of 03-Process.pdf.

(b) [10 points] What is a context? What are the most important items in a context? Provide a detail description

of all activities of a context switch. There are three questions.

Answer: A process needs some system resources (e.g., registers, memory and files) to run properly. These

system resources and other information of a process include process ID, process state, registers, memory

areas (for instructions, local and global variables, stack and so on), various tables (e.g.,, PCB), a program

counter to indicate the next instruction to be executed, etc. They form the environment or context of a

process. The steps of switching process A to process B are as follows:

• The operating system suspends A’s execution. A CPU mode switch may be needed.

• Transfer the control to the CPU scheduler.

• Save A’s context to its PCB and other tables.

• Load B’s context to register, etc. from B’s PCB.

• Resume B’s execution of the instruction at B’s program counter. A CPU mode switch may be needed.

See pp. 10–11 of 03-Process.pdf.

4. Synchronization

(a) [10 points] Define the meaning of a race condition? Answer the question first and use execution sequences

with a clear and convincing argument to illustrate your answer. You must explain step-by-step why your

example causes a race condition.

Answer: A race condition is a situation in which more than one processes or threads manipulate a shared

resource concurrently, and the result depends on the order of execution.

The following is a simple counter updating example discussed in class. The value of count may be 9, 10

or 11, depending on the order of execution of the machine instructions of count++ and count--.

int count = 10; // shared variable

Process 1 Process 2

count++; count--;

The following execution sequence shows a race condition. Two processes run concurrently (condition 1).

Both processes access the shared variable count concurrently (condition 2) because count is accessed

in an interleaved way. Finally, the computation result depends on the order of execution of the SAVE

instructions (condition 3). The execution sequence below shows the result being 9; however, switching the

two SAVE instructions yields 11. Since all conditions are met, we have a race condition. Note that you

have to provide TWO execution sequences, one for each possible result, to justify the existence of a

race condition.

CS3331 Concurrent Computing Exam I Solutions – Fall 2020 4

Thread_1 Thread_2 Comment

do somthing do somthing count = 10 initially

LOAD count Thread_1 executes count++

ADD #1

LOAD count Thread_2 executes count--

SUB #1

SAVE count count is 11 in memory

SAVE count Now, count is 9 in memory

Stating that “count++ followed by count--” or “count-- followed by count++”, even using machine

instructions, produces different results and hence a race condition is incomplete, because the two processes

do not access the shared variable count concurrently. Note that the use of higher-level language statement

interleaved execution may not reveal the key concept of “sharing” as discussed in class. Therefore, use

instruction level interleaved instead.

See pp. 5–12 of 05-Sync-Basics.pdf.

5. Problem Solving:

(a) [10 points] Write a C program segment to create a set of processes so that each of which has two child

processes. One of these two child processes exits quickly and the other continues this process as shown in

the diagram below:

The above diagram shows a tree of processes of depth n, where the main() is marked as 0 and the last

level is n. The value of n is an input from a command line argument from argv[1]. Your program segment

must be correct for any valid value of n> 0. Only providing a program segment for a special number such

as 2 or 3 will receive zero point. To save your time, you do not have to perform error checking, you may

assume that the calls to fork() are always successful, and you may use printf() to print the PID and

PPID of a processes. However, proper wait() and exit() are required.

Answer: This program requires that each process creates two child processes, one of which would end

immediately after printing the needed information (the left leg), while the other prints the needed informa-

tion and continues to create more child processes (the right leg). Therefore, each process creates a child

process which prints the needed output and exits, creates a second process to print its information, and

then waits for both child processes to complete and exits. The second created process DOES NOT exit

after printing its information. Instead it loops back to start the next iteration doing essentially the same as

its parent does. The following is a possible program to implement stated above:

CS3331 Concurrent Computing Exam I Solutions – Fall 2020 5

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <unistd.h>

int main(int argc, char *argv[])

{

int n, i;

pid_t pid;

printf("The root process %d, ppid = %d\n\n", getpid(), getppid());

n = atoi(argv[1]);

for (i = 1; i <= n; i++) {

if ((pid = fork()) == 0) { // child

printf("My ID = %d My PPID = %d\n", getpid(), getppid());

exit(0);

}

else { // parent

if ((pid = fork()) == 0) {

printf("My ID = %d My PPID = %d\n", getpid(), getppid());

}

else {

wait(NULL);

wait(NULL);

exit(0);

}

}

}

}

This is a rather simple problem similar to the problems asked in Programming Assignment I.

(b) [15 points] Consider the following two processes, A and B, to be run concurrently using a shared memory

for the int variable x.
Process A Process B

--------- ---------

for (i = 1; i <= 2; i++) x = 2*x;

x++;

Assume that x is initialized to 0, and x must be loaded into a register before further computations can

take place. What are all possible values of x after both processes have terminated. You must use clear

step-by-step execution sequences of the above processes with a convincing argument. Any vague and

unconvincing argument receives no points.

Answer: Obviously, the answer must be in the range of 0 and 4. It is non-negative, because the initial

value is 0 and no subtraction is used. It cannot be larger than 4, because the two x++ statements and x =

2*x together can at most double the value of x twice.

The easiest answers are 2, 3 and 4 if x = 2*x executes before, between and after the two x++ statements,

respectively. The following shows the possible execution sequences in higher level statement interleaving.

x = 2*x is before both x++

Process 1 Process 2 x in memory

x = 2*x 0

x++ 1

x++ 2

x = 2*x is between the two x++

Process 1 Process 2 x in memory

x++ 1

x = 2*x 2

x++ 3

CS3331 Concurrent Computing Exam I Solutions – Fall 2020 6

x = 2*x is after both x++

Process 1 Process 2 x in memory

x++ 1

x++ 2

x = 2*x 4

The situation is a bit more complex with instruction interleaving. Process B’s x = 2*x may be translated

to the following machine instructions:

LOAD x

MUL #2

SAVE x

Because the LOAD retrieves the value of x, and the SAVE may change the current value of x, the results

depend on the positions of LOAD and SAVE. The following shows the result being 0. In this case, LOAD

loads 0 before both x++ statements, and the result 0 is saved after both x++ statements.

Process 1 Process 2 x in memory Comments

LOAD x 0 Load x = 2 into register

MUL #2 0 Process 2’s register is 0

x++ 1 Process 1 adds 1 to x

x++ 2 Process 1 adds 1 to x

SAVE x 0 Process 2 saves 0 to x

If the SAVE executes between the two x++ statements, the result is 1.

Process 1 Process 2 x in memory Comments

LOAD x 0 Load x = 2 into register

MUL #2 0 Process 2’s register is 0

x++ 1 Process 1 adds 1 to x

SAVE x 0 Process 2 saves 0 to x

x++ 1 Process 1 adds 1 to x

You may try other instruction interleaving possibilities (e.g., replacing the x++ with machine instructions)

and the answers should still be in the range of 0 and 4.

(c) [15 points] Consider the following solution to the mutual exclusion problem for two processes P0 and P1,

where status[] is a Boolean array of two elements and turn is an integer variable. Furthermore, there

are two constants indicating the status of a process, where COMPETING and OUT CS mean competing to

enter the critical section and out of the critical section, respectively. Note that status[] and turn are

global variables shared by both processes, and status[] and turn are global variables shared by both

processes, and status[] are initialized to OUT CS while turn is initialized to either 0 or 1.

int status[2]; // status of a process initialized to OUT_CS

int turn; // initialized to either 0 or 1

Process 0 Process 1

========= =========

1 status[0] = COMPETING; status[1] = COMPETING;

2 while (status[1] == COMPETING) { while (status[0] == COMPETING) {

3 status[0] = OUT_CS; status[1] = OUT_CS;

4 repeat until (turn == 0); repeat until (turn == -1 || turn == 1);

5 turn = 0; turn = 1;

6 status[0] = COMPETING; status[1] = COMPETING;

7 } }

// critical section

8 status[0] = OUT_CS; status[1] = OUT_CS;

9 turn = -1; //I am OUT turn = -1; // I am OUT

CS3331 Concurrent Computing Exam I Solutions – Fall 2020 7

Use proof-by-contradiction to show rigorously that this solution satisfies the mutual exclusion condition.

You will receive zero point if (1) you prove by example, (2) your proof is vague and/or unconvincing, or

(3) you do not prove by contradiction.

Answer: Checking the short code you should be able to see the following:

• When a process reaches its while loop, whether it is the first time or loops back, this process always

has its own status[] set to COMPETING (Line 1 and Line 6).

• Then, if the other process is NOT COMPETING, this process breaks its own while loop and enters its

critical section.

• So far, we know that P0 is in its critical section status[0] is COMPETING due to the statements on

Line 1 and Line 6, AND status[1] is not COMPETING due to the while statement. By the same

reason, if P1 is in its critical section status[1] is COMPETING AND status[0] is not COMPETING.

This is good enough to derive a contradiction for proving mutual exclusion.

• However, there is more to say. Let us look at the variable turn. Suppose P1 is not COMPETING. In this

case P0 enters its critical section immediately and turn plays no role. On the other hand, if P0 enters

its while loop, P0 sets turn to 0 before reaching the end of its while loop. Therefore, as long as

P0 enters its while loop, we have status[0] and status[1] being COMPETING and not COMPETING,

respectively, and turn being 0. By the same reason, as long as P1 enters its while loop, P1 can

enter its critical section, we have status[0] and status[1] being not COMPETING and COMPETING,

respectively, and turn being 1.

Because we do not know whether a process enters its critical section without getting into its while loop,

and because we do not know which process modifies turn first, the role of turn and status[] being

OUT CS are not useful and should not be used. Thus, we can only rely on status[] and we have:

• P0 is in its critical section if and only if status[0] is COMPETING and status[1] is not COMPETING.

• P1 is in its critical section if and only if status[1] is COMPETING and status[0] is not COMPETING.

If P0 and P1 are both in their critical section at the same time, then status[0] (and status[1]) must be

COMPETING and not COMPETING at the same time, which is absurd. Thus, we have a contradiction and the

mutual exclusion condition is met.

