
CS3331 Concurrent Computing Exam 2 Solutions – Fall 2020 1

CS3331 Concurrent Computing Exam 2 Solutions

Fall 2020

1. Synchronization

(a) [15 points] Consider the following solution to the mutual exclusion problem for two processes P0 and P1.

A process can be making a request REQUESTING, executing in the critical section IN CS, or having nothing

to do with the critical section OUT CS. This status information, which is represented by an int, is saved in

flag[i] of process Pi. Moreover, variable turn is initialized elsewhere to be 0 or 1. Note that flag[]

and turn are global variables shared by both P0 and P1.

int flag[2]; // global flags, initialized to OUT_CS

int turn; // global turn variable, initialized to 0 or 1

Process i (i = 0 or 1)

// Enter Protocol

1. repeat // repeat the following

2. flag[i] = REQUESTING; // making a request to enter

3. while (turn != i && flag[j] != OUT_CS) // as long as it is not my turn and

4. ; // the other is not out, wait

5. flag[i] = IN_CS; // OK, I am in (well, maybe); but,

6. until flag[j] != IN_CS; // must wait until the other is not in

7. turn = i; // set the turn to mine!

// critical section

// Exit Protocol

8. turn = j; // yield the CS to the other

9. flag[i] = OUT_CS; // I am out of the CS

Prove rigorously using the proof-by-contradiction technique that this solution satisfies the mutual exclu-

sion condition. You will receive zero point if (1) you prove by example, or (2) your proof is vague and/or

not convincing.

Answer: A process that enters its critical section must first set flag[i] = IN CS (line 5) and then see

flag[j] != IN CS being true at the end of the repeat-until loop (line 6). Therefore, we have the

following:

• Condition for P0 to enter its critical section: If process P0 is in the critical section, it had executed

flag[0] = IN CS followed by seeing flag[1] != IN CS. That is, flag[0] = IN CS and flag[1]

!= IN CS are true.

• Condition for P1 to enter its critical section: If process P1 is in the critical section, it had executed

flag[1] = IN CS followed by seeing flag[0] != IN CS. Hence, flag[1] = IN CS and flag[1]

!= IN CS both hold.

• Prove by Contradiction: If P0 and P1 are both in their critical sections, then (flag[0] = IN CS

and flag[1] != IN CS) AND (flag[1] = IN CS and flag[0] != IN CS) hold at the same time.

However, this means that flag[0] and flag[1] are equal to and not equal to IN CS at the same time.

This is absurd. Consequently, mutual exclusion hold.

Note that the variable turn does not play a role here. Right after P0 and P1 pass their repeat-until loop,

they will store some value to turn. At this point, because P0 and P1 will be in their critical sections without

any obstruction, and the value in turn does not matter.

See page 10 of 06-Sync-Soft-Hardware.pdf. This is the same technique as the one we used to show

that Attempt II satisfies the mutual exclusion condition.

(b) [15 points] Consider the following solution to the mutual exclusion problem for two processes P0 and

P1, where status[] is a Boolean array of two elements and turn is an integer variable. Furthermore,

there are three constants indicating the status of a process, where COMPETING, IN CS and OUT CS mean

competing to enter the critical section, in the critical section, and out of the critical section. Note that

status[] and turn are global variables shared by both processes.

CS3331 Concurrent Computing Exam 2 Solutions – Fall 2020 2

int status[2]; // status of a process

int turn; // initialized to either 0 or 1

Process 0 Process 1

========= =========

1 status[0] = COMPETING; status[1] = COMPETING;

2 do { do {

3 while (turn != 0) { while (turn != 1) {

4 status[0] = OUT_CS; status[1] = OUT_CS;

5 if (status[turn] == OUT_CS) if (status[turn] == OUT_CS)

6 turn = 0; turn = 1;

7 } }

8 status[0] = IN_CS; status[1] = IN_CS;

9 } while (status[1] == IN_CS); } while (status[0] == IN_CS);

// critical section

10 status[0] = OUT_CS; status[1] = OUT_CS;

Use a clear and convincing execution sequence to show that this solution does not satisfy the bounded waiting

condition. A convincing argument is required. You will receive zero point if (1) you do not use a valid

execution sequence, or (2) your execution sequence is vague and/or unconvincing. Hint: the value of turn

plays a significant role.

Answer: As indicated in the hint, the role of turn is significant. Note that turn is only set to 0 and 1 by
P0 and P1 (line 6), respectively. Upon exit its critical section, from P0’s point of view turn is zero. This
is because P0 must break the while loop, which means turn is 0. Now, if P0 comes back fast before P1

can set turn to 1, P0 can enter immediately. Therefore, if P0 (resp., P1) exits its critical section, turn is
0 (resp., 1). This is the major cause of the failure of the bounded waiting condition. In other words, this
solution is in favor of the just-exited process.

P0 P1 turn status[0] status[1] Comment

1 0

2 s[0]=C s[1]=C 0 C C Entering

3 while while 0 C C P0 breaks while

4 s[0]=IN 0 IN C P0 about to enter

5 s[1]=OUT 0 IN OUT P0 about to enter

6 P0 enters its critical section

7 s[0]=OUT if 0 OUT OUT P0 enters CS

8 P0 comes back

9 s[0]=C while loops back 0 C OUT P0 entering

10 if 0 C OUT if is false

11 while while 0 C OUT P1 loops back

12 s[0]=IN 0 IN OUT P0 about to enter

13 P0 enters its critical section

Suppose that turn is 0, meaning P0 may just exit its critical section. See the execution sequence above.

To save space, we use s[], C, IN and OUT to indicate status[], COMPETING, IN CS and OUT CS, respec-

tively. From the above observation, if P0 is fast enough so that every time before P1 can test the value of

status[turn] P0 sets status[0] to either COMPETING or IN CS, P0 enters. In this execution sequence,

P0 simply repeats the action between line 6 and line 12 in the above execution sequence. As a result, P1

will starve, which means P0 simply keeps entering the critical section and P1 does not have any chance. Of

course, the bounded waiting condition fails.

(c) [10 points]∗ Define the meaning of a race condition? Answer the question first and use execution se-

quences with a clear and convincing argument to illustrate your answer. You must explain step-by-step

why your example causes a race condition. Without using valid execution sequences you will receive

0 point.

Answer: A race condition is a situation in which more than one processes or threads manipulate a shared

resource concurrently, and the result depends on the order of execution.

The following is a simple counter updating example discussed in class. The value of count may be 9, 10

or 11, depending on the order of execution of the machine instructions of count++ and count--.

CS3331 Concurrent Computing Exam 2 Solutions – Fall 2020 3

int count = 10; // shared variable

Process 1 Process 2

count++; count--;

The following execution sequence shows a race condition. Two processes run concurrently (condition 1).

Both processes access the shared variable count concurrently (condition 2) because count is accessed

in an interleaved way. Finally, the computation result depends on the order of execution of the SAVE

instructions (condition 3). The execution sequence below shows the result being 9; however, switching the

two SAVE instructions yields 11. Since all conditions are met, we have a race condition. Note that you

have to provide TWO execution sequences, one for each possible result, to justify the existence of a

race condition.

Thread_1 Thread_2 Comment

do somthing do somthing count = 10 initially

LOAD count Thread_1 executes count++

ADD #1

LOAD count Thread_2 executes count--

SUB #1

SAVE count count is 11 in memory

SAVE count Now, count is 9 in memory

Stating that “count++ followed by count--” or “count-- followed by count++”, even using machine

instructions, produces different results and hence a race condition is incomplete, because the two processes

do not access the shared variable count concurrently. Note that the use of higher-level language statement

interleaved execution may not reveal the key concept of “sharing” as discussed in class. Therefore, use

instruction level interleaved instead.

See pp. 5–12 of 05-Sync-Basics.pdf.

2. Semaphores

(a) [10 points] Consider the following code:

Thread 1 Thread 2 Thread 3

======== ======== ========

while (1) { while (1) { while (1)

// do something // do something // do something

cout << "1"; cout << "2"; count << "3";

// do something // do something // do something

} } }

There are three threads. The first, second, and third thread prints 1, 2 and 3, respectively. Declare and add

semaphores to the above code so that the output of these three concurrently running threads is 1, 2, 3, 2, 1,

2, 3, 2, 1,

Answer: This is a very simple problem. It was discussed in class to some degree and was an exercise on a

weekly reading list. The following is a possible solution:

CS3331 Concurrent Computing Exam 2 Solutions – Fall 2020 4

In the above code, going from thread 1 to thread 2 and going from thread 2 to thread 3 are exactly the

same as the “1 2 1 2 ...” pattern discussed in class. What is really needed is a going-back pattern from

thread 3 to thread 2 and then from thread 2 to thread 1. Note that the S2.Signal() call in Thread 1 will

not release the second S2.Wait() in Thread 2. If Thread 2 is blocked by its second S2.Wait(), it has

already passed the first S2.Wait(), which also means Thread 2 was released by the S2.Signal() call in

Thread 1. As a result, Thread 1 is blocked by its S1.Wait() and has no way to release Thread 2. We need

to add a section of code to bridge between thread 3 and thread 1. That is it!

(b) [10 points] We discussed in class that the two methods Wait() and Signal() of a semaphore must be

atomic to ensure a correct implementation of mutual exclusion. Use execution sequences to show that if

Wait() is not atomic then mutual exclusion cannot be maintained. You must show clearly what the

intended mutual exclusion is and how the mutual exclusion condition is violated with execution se-

quences and provide a convincing explanation. Otherwise, you will risk a lower score. Note also that

this question asks for a possible violation of mutual exclusion rather than having a race condition.

Answer: If Wait() is not atomic, its execution may be switched in the middle. If this happens, mutual

exclusion will not be maintained. Consider the following solution to the critical section problem:

Semaphore S = 1;

Process A Process B

--------- ---------

Wait(S); Wait(S);

// in critical section

Signal(S); Signal(S);

The execution sequence below is a possible example, where Count = 1 is the internal counter variable of

the involved semaphore S.

Process A Process B Count Comment

1 Initial value

LOAD Count 1 A executes Count-- of Wait()

SUB #1 1

LOAD Count 1 B executes Count-- of Wait()

SUB #1 1

SAVE Count 0 B finishes Count--

SAVE Count 0 A finishes Count--

if (Count < 0) 0 It is false for A

if (Count < 0) 0 It is false for B

Both A and B enter the critical section

Note that this question asks you to demonstrate a violation of mutual exclusion. Consequently, you

receive low grade if your demonstration is not a violation of mutual exclusion. Additionally, if you

failed to indicate how the needed critical sections that require mutual exclusion is formed, you also

risk a lower grade.

This problem was assigned as an exercise in class. See slide 8 of 08-Semaphores.pdf.

(c) [10 points] Show that the 1-weirdo solution to the dining philosophers problem will not cause circular

waiting and hence is deadlock free. You should prove this rigorously. A vague and/or unconvincing

argument is not acceptable and will receive no points.

Answer: Suppose the weirdo is philosopher 5. We have two cases to consider: (1) if Philosopher 5 has his

right chopstick, and (2) if Philosopher 5 does not have his right chopstick.

• Philosopher 5 Has His Right Chopstick:

In this case, Philosopher 1 does not have his left chopsticks and cannot eat. See Figure (a) below. The

worst case is that philosophers 2, 3 and 4 all have their left chopsticks and are waiting for their right

ones in order to eat. Otherwise, there is at least one philosopher is eating, and the system does not

have a deadlock. Depending on whether Philosopher 5 has his left chopstick, we have the following

two possibilities.

CS3331 Concurrent Computing Exam 2 Solutions – Fall 2020 5

– Philosopher 5 Has His Left Chopstick:

In this case, Philosopher 5 has both chopsticks and can start eating. There is no deadlock. See

Figure (b) below.

– Philosopher 5 Does Not Have His Left Chopstick:

In this case, Philosopher 5’s left chopstick is being held by Philosopher 4 as his right chopstick,

and, of course, Philosopher 4 can eat. There is no deadlock either. See Figure (c) below.

• Philosopher 5 Does Not Have His Right Chopstick:

In this case, Philosopher 5’s right chopstick is being held by Philosopher 1 as his left chopstick, and,

hence, Philosopher 5 cannot eat. See Figure (d) below. The worst case possible is that Philosopher 1

to Philosopher 4 all have their left chopsticks and wait for their right chopsticks. Since Philosopher 5

cannot eat, his left chopstick is free and can be used by Philosopher 4 as his right chopstick. Therefore,

Philosopher 4 can eat, and there is no deadlock.

Figure (a) Figure (b)

Figure (c) Figure (d)

Since the above enumeration is exhaustive and since none of these cases can cause a deadlock, we con-

clude that the 1-weirdo version is deadlock free.

3. Problem Solving:

(a) [15 points] Let T0, T1, . . ., Tn−1 be n threads, and let a[] be a global int array of n elements. Moreover,

thread Ti only uses a[i] and a[(i+1)%n] for 0 ≤ i ≤ n−1. Thus, array a[] is “circular.” Additionally,

Center is a global variable shared by all threads.

The code below processes Center and a[] without synchronization,

CS3331 Concurrent Computing Exam 2 Solutions – Fall 2020 6

int Center = ... // some initial value

int a[n] = { } // some initial values

Thread i

========

1. while (1) {

2. // other irrelevant computation

3. a[i] = f(a[i], a[(i+1)%n]); // f() does not use a[] and Center

4. Center = a[i] + Center;

5. // other irrelevant computation

6. }

Declare and insert semaphores to the above code so that the indicated task can be performed correctly. You

may use as many semaphores as you want. However, you should avoid busy waiting, race conditions,

and deadlocks. Moreover, your modification should aim for maximum concurrency. A code with close

to minimum concurrency receives zero point.

Answer: The code template shows three important facts: (1) variable Center is being shared by all threads,

(2) array element a[(i+1)%n] is being used by thread Ti and T(i+1)%n, and (3) array element a[i] is

modified by thread Ti. See the diagram below.

Therefore, array a[] resembles the chopsticks in the Dining Philosophers problem, and each array el-

ement (i.e., chopstick) has to be protected by a semaphore. Thread i (i.e., philosopher i) uses a[i] and

a[(i+1)% n]. Finally, a semaphore is needed to protect Center. Let these semaphores be S Center and

S a[]. We have the following:

int Center = ... // some initial value

int a[n] = { } // some initial values

Semaphore S_Center = 1;

Semaphore S_a[n] = { 1, 1,, 1 };

It is important to note that thread Ti only reads a[(i+1)% n]. It is not worth to lock a[(i+1)% n] while

in function f(), which could be time consuming. As a result, we could lock a[(i+1)% n] and copy

its value to a local variable Local. In this way, a[(i+1)% n] is free for thread T(i+1)%n to use (actually

modify). Because only Ti modifies a[i] after calling f(), the execution of f(a[i],Local) does not

affect the value of a[i] and no protection for f() is needed. When saving the result of f() to a[i],

protection is needed. The final version looks like the following:

CS3331 Concurrent Computing Exam 2 Solutions – Fall 2020 7

int Center = ... // some initial value

int a[n] = { } // some initial values

Semaphore S_Center = 1;

Semaphore S_a[n] = { 1, 1,, 1 };

Thread i

========

1. int Local, fx;

2. while (1) {

3. // other irrelevant computation

4. S_a[(i+1)%n]).Wait(); // Lock a[(i+1)%n]

5. Local = a[(i+1)%n]; // Make a copy

6. S_a[(i+1)%n]).Signal(); // Release a[(i+1)%n]

7. fx = f(a[i], Local); // f() does not use a[] and Center

8. S_a[i].Wait(); // Lock a[i]

9. a[i] = fx; // Update a[i]

10. S_a[i].Signal(); // Unlock a[i]

11. S_Center.Wait(); // Lock Center

12. Center = fx + Center; // Update Center

13. S_Center.Signal(); // Release Center

14. // other irrelevant computation

15. }

The following version is not very efficient. Because Center is being used by all threads, at any time there is

one and only one thread can be executing Line 6-7 below. Consequently, this serializes the execution of all

threads, and the execution of these n threads becomes sequential. This means that there is no concurrency

at all.

int Center = ... // some initial value

int a[n] = { } // some initial values

Semaphore S_Center = 1;

Semaphore S_a[n] = { 1, 1,, 1 };

Thread i

========

1. while (1) {

2. // other irrelevant computation

3. S_a[(i+1)%n]).Wait(); // Lock a[(i+1)%n]

4. S_a[i].Wait(); // Lock a[i]

5. S_Center.Wait(); // Lock Center;

6. a[i] = f(a[i], a[(i+1)%n]);

7. Center = a[i] + Center;

8. S_Center.Signal(); // Release Center;

9. S_a[i].Signal // Release a[i]

10. S_a[(i+1)%n].Signal // Release a[(i+1)%n]

11. // other irrelevant computation

12. }

The following version is even worse:

CS3331 Concurrent Computing Exam 2 Solutions – Fall 2020 8

int Center = ... // some initial value

int a[n] = { } // some initial values

Semaphore S = 1;

Thread i

========

1. while (1) {

2. // other irrelevant computation

3. S.Wait();

4. a[i] = f(a[i], a[(i+1)%n]);

5. Center = a[i] + Center;

6. S.Signal();

7. // other irrelevant computation

8. }

In terms of concurrency, this version is the same as the above one because there is one and only one thread

can be executing in Line 4-5.

(b) [15 points] A unisex bathroom is shared by men and women. A man or a woman may be using the room,

waiting to use the room, or doing something else. They work, use the bathroom and come back to work.

The rule of using the bathroom is very simple: there must never be a man and a woman in the room at the

same time; however, people with the same gender can use the room at the same time.

Man Thread Woman Thread
void Man(void)

{

while (1) {

// working

// use the bathroom

}

void Woman(void)

{

while (1) {

// working

// use the bathroom

}

Declare semaphores and other variables with initial values, and add Wait() and Signal() calls to the

threads so that the man threads and woman threads will run properly and meet the requirement. Your

implementation should not have any busy waiting, race condition, and deadlock, and should aim for max-

imum parallelism.

A convincing correctness argument is needed. Otherwise, you will receive no credit for this problem.

Answer: This is a simple variation of the reader-priority readers-writers problem. More precisely, we

allow the “writers” to write simultaneously, the “readers” and “writers” cannot do their work at the same

time. Therefore, the writers have the same structures as the readers. We need to maintain two counters,

one for the males MaleCounter and the other for the females FemaleCounter. Of course, we need two

Mutexes MaleMutex and FemaleMutex for mutual exclusion. In addition, there is a semaphore BathRoom

to block the males (resp., females) if the room is being used by the females (reap., males). Note that the

male thread and female thread are symmetric.

CS3331 Concurrent Computing Exam 2 Solutions – Fall 2020 9

int MaleCounter = 0, FemaleCounter = 0; // male and female counters

Semaphore MaleMutex = 1, FemaleMutex = 1; // male and female counters

Semaphore BathRoom = 1; // the bathroom is empty initially

Male Thread Female Thread

while (1) { while(1) {

// working // working

MaleMutex.Wait(); FemaleMutex().Wait(); // update counter

MaleCounter++; FemaleCounter--;

if (MaleCounter == 1) if (FemaleCounter == 1) // if I am the first

BathRoom.Wait(); BathRoom.Wait(); // yield to other

MaleMutex.Signal(); FemaleMutex.Signal();

// use the bathroom // use the bathroom

MaleMutex.Wait(); FemaleMutex.Wait(); // update counter

MaleCounter--; FemaleCounter--;

if (MaleCounter == 0) if (FemaleCounter == 0) // if I am the last one

BathRoom.Signal(); BathRoom.Signal(); // let the other group know

MaleMutex.Signal(); FemaleMutex.Signal();

} }

Refer to the class notes for the solution to the reader-priority version of the readers-writers problem for the

details.

