Booting and Shutting Down

- **Bootstrapping**
 - The computer must pull itself up
 - Automatic and manual booting
 - **Steps in the boot process**
 - Loading and initialization of the kernel
 - Device detection and configuration
 - Creation of spontaneous system processes
 - Execution of system startup scripts
 - Multi-user operation

- **Kernel initialization**
 - Pathname is vendor dependent
 - Traditional /vmunix
 - Two steps loading
 - ROM loads a small boot program into memory from disk
 - This program then arranges for the kernel to be loaded
 - Memory for internal data structure is allocated

- **Hardware configuration**
 - Check what hardware present
 - Locate and initialize each device as specified
 - Probe the bus for devices and ask the appropriate drivers for information
 - Reboot maybe needed for new devices connected later.
Booting and Shutting Down

- **System processes**
 - **Spontaneous processes**
 - Vary from system to system
 - On system V-ish machines:
 - `sched` – process 0
 - `init` – process 1
 - various memory and kernel process handlers.
 - Not real processes, but part of kernel
 - *Once the spontaneous processes have been created, the kernel's role in bootstrapping is complete.*

- **Single user**
 - Password may or may not be required to enter into root shell
 - The root partition `/` is mounted
 - `/usr` maybe mounted too
 - You can mount other partition manually
 - You can change the read-only mount to be write-mode

- **Execution of startup scripts**
 - Normal shell scripts
 - Process `init` run them according some rules

- **Multi-user operation**
 - `Init` spawns getty processes
 - `Getty` allows user login
Booting and Shutting Down

- Booting in single-user mode
 - Solaris
 - From boot prom (by press stop + a), type
 `boot -s`
 - Other boot commands
 - `boot /path_to_kernel`
 - `boot -s`
 - `boot -r`
 - `boot -a /etc/system.bak`
 - `probe-scsi`
 - HP-UX
 - During prompt
 - Type "boot pri isl"
 - Then type "hpux -iS /stand/vmunix"

Booting PC

- More complex than ...
- Firmware in machine designed for Unix knows
 - How to use the device connected to the machine
 - How to talk to the network on a basic level
 - How to understand disk based file system
- On PC, initial boot code is BIOS - extremely simplistic compare to the firmware
 - Set the boot priority, try cdrom, then disk, ...
 - Load the first 512 bytes of the disk - Master Boot Record (MBR)
 - MBR load a secondary boot program ("boot loader") from a disk partition
 - Lilo (Linux Loader)
 - Grub (Grand Unified Bootloader)
Grub

- Powerful boot loader
 - Is designed to address the complexity of booting a personal computer
 - A wide variety of free OS + proprietary OS

- How to boot OS
 - Loading an OS directly
 - Chain-loading

- Naming convention
 - The first hard disk partition 1: (hd0,1)
 - (hd0,0)/vmlinuz

Loading OS from Grub

- Grub can boot any multiboot-compliant OS in the steps directly:
 - Set root device with command root
 - Load the kernel image with command kernel
 - Append parameters to kernel after the filename
 - Load modules with module
 - Run the command with boot

- Example:
 - title GNU/Linux
 - Kernel (hd1,0) /vmlinuz root=/dev/hdb1
Grub’s chain-lading

- Boot unsupported operating system
 - The boot load is in the boot sector of the partition where the OS is installed
 - Set root device with rootnoverify
 - Set the active flag in the partition with makeactive
 - Load the boot loader with chainloader
 - Run boot

- **Example:**
 - Title Windows NT
 - Root (hd0,0)
 - Make active
 - Chainloader +1

Make your system robust
Network boot

- Situation
 - No local disk
 - Installation

- Net BOOT ROM - PXE ROM
 - Boot the machine
 - Set up the network card (talk with DHCP)
 - Download a second stage boot image - pxegrub
 - Pxegrub will download configuration from tftp server
 - Then download the OS image

Protecting

- Set password to start interactive operation
 - password -md5 1............

- For each item
 - Use lock
 - Title Boot DOS
 - Lock
 - Rootnoverfy (hd0,1)
 - Makeactive
 - Chainload +1
 - Use password in the place of lock
Grub’s user interface

- Menu interface
 - Choose preconfigured
 - Edit the configuration
- Command line
 - flexible. - do what ever you need
- Get into the interface
 - Interrupt before the timeout
 - timeout sec

Exercise

- Take a look at your grub configuration file
 - /etc/grub.conf
 - what is the root device
- Get into the grub menu interface
- Get into the grub command line
Startup scripts

- System V style
 - /etc/init.d
 - /etc/rc0.d /etc/rc1.d ...
- Startup scripts perform
 - Setting the name of the computer
 - Setting the time zone
 - Checking the disks with fsck
 - Mounting the system's disk
 - Removing old files from /tmp directory
 - Configuring the network interfaces
 - Starting up daemons and network services

- Run levels:
 - Level 0: system is completely shut down
 - Level 1 or 5: single-user mode
 - Level 2 -5: multiuser levels
 - 2 or 3 are normal
 - 4 or 5 rarely used
 - Level 6: reboot level
- What to do for each level
 - Defined in /etc/inittab
 - Entry format:
 id:runlevels:action:process
 - Default level
 - Typically SAs don't need to mess up with it
Startup scripts

- **The startup scripts called by inittab**
 - Individual script master copy stays in init.d, typically under /etc or /sbin
 - Understand argument start, stop, [restart]
 - Symbolic links are made to appropriate directories /etc/rc*.d or /sbin/rc*.d
 - Links start with S or K followed by a number and the name of the service
 - Example, on Fedora under /etc/rc3.d
 - K20nfs -> ../init.d/nfs
 - S12syslog -> ../init.d/syslog

- **When lower run level transitions to higher level:**
 - Init runs all the scripts start with **S**
 - in **ascending** numerical order
 - with argument **start**

- **When higher run level transitions to lower level:**
 - Init runs all the scripts start with **K** (for kill)
 - in **descending** numerical order
 - with argument **stop**

- **To start a daemon, we need to make a symbolic links.**
 - Example:
 - `#ln -s /etc/init.d/sshd /etc/rc2.d/S99sshd`
 - `#ln -s /etc/init.d/sshd /etc/rc2.d/K25sshd`
Startup scripts

- Solaris startup scripts
 - System-V style
 - /etc/init.d and /etc/rc*.d
 - Configuration files
 - /etc/default
 - init
 - Login
 - Console
 - Cron
 - ...
 - /etc/hostname.interface

- HP-UX startup scripts
 - System-V style
 - /sbin/init.d and /sbin/rc*.d
 - Configuration files
 - Under /sbin/rc.config.d
 - Match the master script name
 - Example:
 - /sbin/init.d/HpmOracle
 - /sbin/rc.config.d/HpmOracle
 - Output of startup scripts in /etc/rc.log
 - Excellent place to look for startup errors.
Startup scripts

- Some commonly modified HP-UX config files in `/etc/rc.config.d`
 - SnmpMaster
 - auditing
 - netconf
 - nameservs
 - nfsconf
 - mailservcs
 - lp

- **Red Hat startup scripts**
 - `/etc/rc.local`
 - interactive confirmation mode
 - `/etc/sysconfig files`
 - Hwconf
 - Network, network-scripts
 - Sendmail
 - syslog

- **FreeBSD**
 - A single startup script `/etc/rc`
 - No concept of level
 - Read three files that specify configuration
 - `/etc/defaults/rc.conf`
 - `/etc/rc.conf`
 - `/etc/rc.conf.local`
 - Scripts `rc.something` will be run in a predefined order.
 - Script `rc.local`
Rebooting and shutting down

- The need to reboot/shutdown
 - Scheduled maintenance, such as OS upgrade
 - Hardware changes or additions
 - Running diagnostics
 - Performance tuning, such as changing static system configuration
 - Administrative tasks, such as testing new startup scripts, etc.
 - System not responding

- Clean system shutdown
 - All users are notified, with some reasonable advance warning.
 - All running processes are sent a signal to exit gracefully, provided the program has made provisions to do so.
 - All subsystems are shutdown gracefully.
 - All remaining users are logged off and remaining processes are killed.
 - File system integrity is maintained.
 - Depending on the type of shutdown, the system moves to single-user mode, the processor is halted, or the system is rebooted...
Rebooting and shutting down

- **Ways to shutdown or reboot**
 - Turn off power
 - Use shutdown command
 - Use halt or reboot commands
 - Sending init a TERM signal
 - Using telinit to change init’s run level
 - Killing init

- **Command shutdown**
 - Safest, most considerate, and most thorough way to
 - Initiate a halt
 - Reboot
 - Return to single-use mode
 - Arguments
 - **System V:**
      ```bash
      shutdown -g n [-i level] [-y]
      -g Wait time, default 60
      level usually
      0: if you intend to turn off the power
      1: administrative state
      2: single-user mode
      5 firmware
      6 reboot to initdefault state
      ```
Rebooting and shutting down

- Example. On Hp-Ux
 `shutdown -h now`
- Read “man shutdown” on your lab machine and try it out.

- Aborting a shutdown
 - During grace period, kill it
 - Otherwise, leave it

- Shutdown security
 - On Hp-UX
 - Only root is allowed by default
 - Configure `/etc/shutdown.allow`

Rebooting and shutting down

- When the system crashes
 - Hardware failure
 - Ex: CPU panic
 - Unrecoverable hardware errors
 - Power failures
 - Env problems: too hot.
 - Software problems
 - Resource problems

- What to do
 - Reboot
 - Collect the info
 - Check the lights
 - Check the console
 - Check the crash dump file or other logs if rebooted already

- When the system won’t boot
Rebooting and shutting down

- **Common failures**
 - **Bad or flaky hardware**
 - Check the obvious first
 - Is it turned on?
 - Is cable connection loose?
 - Is the SCSI chain terminated?
 - Try humoring the device
 - Power cycling
 - Call field service
 - **Device failure**
 - Call field service

- **Unreadable filesystems on working disks**
 - Bad rootfilesystem
 - Boot it up using other media (tape or cdrom)
 - Remaking the system restoring its files from backup.
 - The worst case is to reinstall OS and restore files
 - Example: HP-UX has the recovery utility

- **Damage to non-filesystem areas of a disk**
 - Damaged boot areas:
 - Boot block can be restored sometime.
 - Exactly follow the steps that vendor support provides
 - **Corrupted partition tables**
 - Recreate the partition provided you have complete and detailed records of how the partitions were setup.
Rebooting and shutting down

- **Incompatible hardware**
 - New device
 - System does not support the type of device
 - Need system reconfigure
 » Remove it first and then follow the vendor instruction to make the change on your system first.
 - Problems after an upgrade
 - Too old devices
 - New release bugs

- **System configuration**
 - Error in configuration files
 - Unbootable kernel