Backup

- Why backup?
 - The choice of goals.
- Where?
 - The choice of medias.
- What?
 - The choice of contents.
- When?
 - The choice of schedules.
- How?
 - The choice of procedures of operations.

Backups

- Unattended backups - Avoid manually switch the tapes for one backup if possible
 - Buy a higher-capacity tape device
 - By a stacker or library and feed multiple pieces of media to one device
 - Change you dump sequence
 - Write a smarter script
 - Use multiple backup devices
- Protect your backups
 - Keep tapes off-site
 - Secure store Location
 - Write-locked
- Limit activity during dumps
Backups

- Verify your backup tapes
 - List the contents
 - Restore to another server
- Develop a tape life cycle
- Label your tapes
 - Uniquely identify their contents
 - Format, exact syntax of the dump command
 - Get a label machine
- Pick a reasonable backup interval
- Design your data for backups
- Choose file systems carefully
- Prepare for the worst
- Perform centralized backup

Backup Strategies

- Full backup
 - Copy all the files on a system to a backup device
 - Time consuming
- Incremental backups
 - Copy only those files that have been changed since some previous backup
 - Fast
 - Need previous backup for a complete restore
- Backup level
 - Each backup type has a level number assigned to it.
 - Full backup is 0
 - Backing up the system at level N means saving all the files that have changed since the very last backup at the level less than N
Backup Strategies

- Combination of using multiple levels:
 - Example 1:
 - Backup schedule:
 - Monday: level 0 backup
 - Tuesday: level 1 backup
 - Wednesday: level 1 backup
 - Thursday: level 1 backup
 - Friday: level 1 backup
 - How many tapes are needed to restore the complete filesystem?

Backup Strategies

- Example 2:
 - Backup schedule:
 - First Monday of month: level 0 full
 - All other Mondays: level 1 weekly incremental to 0
 - Tuesday: level 2 daily incremental to 1
 - Wednesday: level 2 daily incremental to 1
 - Thursday: level 2 daily incremental to 1
 - Friday: level 2 backup
 - How many tapes are needed for a complete restore?
Backup Strategies

- **Consider:**
 - Use different schedule for different filesystems
 - Make a full backup whenever you make significant change
 - A new kernel
 - OS upgrade
 - New application package installation

Backup Devices and Media

- Use removable media
- For media using magnetic particles, avoid
 - Audio speaker
 - Transformers and power supplies
 - Monitors use transformers and high voltages.
 - Prolonged exposure to the earth’s background radiation
- Floppy disks
 - Cheap and short life
 - Small capacity and slow
 - Drive comes with the system
Backup Devices and Media

- Super floppies
 - Zip drive
 - More capacity (> 128MB)
 - High media cost
 - Available with parallel, serial, SCSI and USB connectors.
- CD-R and CD-RW
 - More capacity, 650MB
 - Available with SCSI, IDE, parallel, USB, etc.
 - Are written with a laser through a photochemical process
 - Longer shelf life than magnetic media
 - Have you heard of CD-eating fungus?
- DVD writer
 - High capacity

Backup Devices and Media

- Removable hard disks
 - Orb drive from Castlewood Industries, 2.2G
 - Jaz from Iomega, 2G
 - Speed is attractive, comparable to normal disk drives
 - Small system and home machine backup
- DDS(4mm) cartridge tapes
 - Digital Data Storage
 - Use same principle as home video recorders - more reliable, lower error rate than DAT (Digital Audio Tape)
 - Can hold up to 20G
Backup Devices and Media

- DLT (Digital Linear Tapes)
 - Popular backup device
 - Quantum
 - Hold large amounts of data: DLT4 80G
 - Fast transfer rate: 6MB/s
 - Pricey media

- AIT (Advanced Intelligent Tape)
 - 6MB/s
 - 50G

- Mammoth
 - Exabyte's
 - 12MB/s native transfer rate

Backup Devices and Media

- Jukeboxes, stackers and tape libraries
 - A stackers is a simple tape changer that is used with a standard tape drive
 - A jukebox is a hardware device that can automatically change removable media in a limited number of drives
 - Tape libraries are a hardware backup solution for large data sets.

- Hard disks
 - Backup over network

- What to buy?
 - Budget
 - requirement
Native Backup & Recovery Utilities

- Backing up with the dump utility
- Restoring with the restore utility
- Backing up and restoring with the cpio utility
- Backing up and restoring with tar utility
- Backing up and restoring with dd utility
- Device-level tape manipulation with mt

Dump and restore

- the most common way to create and restore from backups
- The underlying commands used by automated backup software

Advantages:
- Backup can span multiple tapes
 - It detects the end of tape (EOT) and ask for a new tape
- Files of any type (even devices) can be backup and restored
- Permissions, ownerships and modification times are preserved.
- Files with holes are handled correctly
- Backup can be performed incrementally
- Read the inode table, so very efficient.
- Long names are handled correctly.
Dump and restore

- Limitations
 - Every filesystems must be dumped individually
 - Only filesystems on the local machine can be dumped.

- Incremental backup
 - File /etc/dumpdates to determine how far back an incremental dump must go
 - Flag u causes dump to automatically update /etc/dumpdates
 - /etc/dumpdates must be created manually first time
 - Dump sends output to some default device unless flag f is used
 - Use nonrewinding tape when put multiple dumps on a single tape.

Dump and restore

- Dump’s most important options
 - 0-9 The first argument of dump is the incremental dump level.
 - u Update /etc/dumpdates upon successful backup
 - s The size of the backup tape in feet
 - d density of the backup tape in bytes per inch (bpi)

- Example:
 - $ dump 3u /chem
Dump and restore

- **Restore's most important options**
 - `r` Read and restore the entire tape
 - `x` extract all files and directories listed and restore them in the current directory
 - `t` type the name of the listed files and directories on the terminal. Can be used to verify the tape is readable.
 - `f` name of the file or device holding the dump
 - `s` the corresponding argument indicates which file on tape is to be used for the restore.
 - `i` interactive mode. Most useful to restore a small group of files.

Dump and restore

- **Restore a entire filesystem**
 - Step1: restore the most recent level 0 dump
 - Step2: restore the recent next level
 - Step3: continue the procedure step2 until the last dump
 - **Example:**
 - Some dump sequences. Red number are the ones need to restore.
 - 000000
 - 032545
Dump and restore

- **A complete example:**

  ```bash
  #/etc/mount /dev/dsk/c201d6s0/home
  #cd /home
  Mount first tape of level 0. Use mt to position to the right
  spot and then
  #restore r
  Mount the next level tape. Use mt to position to the right
  spot and then
  #restore r
  ```

Dump and restore

- Again, exact command name, options, syntax varies from platform to platform
 - Example, On Solaris
 - dump has nothing to do with backup
 - The dump command is ufsdump
 - The restore command is ufsrestore
 - Check the OS specific document before you type the command
tar

- An archiving program for store and extract files from an archive file known as tarfile.

- **Features:**
 - create (-c), extract(-x) or view (-t) a tape file
 - Tarfile can be on tape file or a normal file (-f).
 - Recursive to directory
 - preserves ownership information (-p option)
 - Follow symbolic link (-h option)
 - Blocking factor may yield better performance (-b)
 - Use relative path (-C)

- **Drawbacks of some version of tars**
 - May not allow multiple tape volumes
 - Pathname may be limited to 100
 - File size maybe limited to 2G

tar

- **Format:**
 - %tar options list_of_files

- **Examples:**
 - Save all files under /home to the default tape drive.

 `$tar -c /home`

 - Copy directory tree fromdir to todir

 `$tar cf - fromdir | (cd todir; tar xfp -)`

 - Save all the files under the directories /home, /home2 and /chem/public

 `* $tar -cf /dev/rmt1 /home /home2 /chem/public`

 - Perform a backup of files has been changed within a day

 `* $ tar c `find /home -mtime -1 ! -name "*.o" ! -type d -print`
cpio

- *Copy files to and from archives*

- **Advantages**
 - It is designed to easily backup completed arbitrary sets of files; tar is easiest to use with directory subtrees.
 - Work with find together.
 - It packs data on tape much more efficiently than tar.
 - On restore, it skips over bad spots on the tape while tar just dies.
 - It can span tapes.

- **Three operating modes**
 - **Copy-out mode** (-o)
 - Read a list of filenames, one per line, on the standard input, and write the archive onto the standard output.
 - Example:
      ```sh
cpio -o > /dev/rmt0
      ```
 - **Copy-in mode**
 - Copy files out of an archive or lists the archive contents
 - **Copy-pass mode**
 - Copy files from one directory tree to another, without using an archive.
      ```sh
cpio -pdm todir
      ```
 - **Perform an incremental backup using cpio**
 - Touch /backup/home_full
 - Find /home -print | cpio -o > /dev/rmt0
 - A day later ...
 - Touch /backup/home_incr_1
 - Find /home -newer /backup/home_full -print | cpio -o > /dev/rmt0
dd

- **A file copying and conversion program**
 - Transfer raw data between devices

- **Example:**
 - **Make a copy of magnetic tape**

    ```bash
    $dd if=/dev/rmt8 of=/dev/rmt9 cbs=16b
    ```

 If there is only one tape:
    ```bash
    $dd if=/dev/rmt8 of=tfile cbs=16b
    $dd if=tfile of=/dev/rmt8 cbs=16b
    ```

 - **Convert the byte order, a usage to read on a SUN machine a tar tape written on an SGI machine:**
    ```bash
    $ dd if=/dev/rst8 conv=swab | tar xf -
    ```

mt

- **Direct manipulation of tapes**
- **Format:** `mt [-f tapename] command [count]`
- **Commonly used function**
 - Remind (rew)
 - Check status (status)
 - Puts the tape off-line (offl)
 - Position a tape at a particular fileset (fsf [count], bsf [count])
 - Can be confusing
 - Quite useful sometime

- **Example**
 - Find what’s on a tape with no labels
Commercial Backup utilities

- **Consideration**
 - Full support of your platforms - heterogenous
 - Backup of raw partitions
 - Multiplexing
 - Simultaneous backup of many clients to one drive
 - Simultaneous backup of one client to many drives
 - Storage management features
 - Reduction in Network traffic
 - Support of a standard or custom backup format
 - Ease of administration
 - Ease of recovery
 - Protection of the backup index
 - Automation
 - Cost
 - Vendor

- Some packages with Unix vendor with extra payment

- Enterprise level backup solution examples
 - Commercial software
 - Veritas Netbackup
 - HP Openview OmniBack
 - Free software
 - Bacula
 - Amanda
Backing Up and Restoring the System
Filesystems

- Backup/restore the modified configuration
- When system filesystems need to be completely restored:
 - Reinstall OS and restore the files that you have modified
 - How many files have been customized
 - How widely they are spread
 - How much device and other reconfiguration needs to be redone
 - Booting from alternate media and then restoring the filesystems from full backup.
 - Basic steps
 - Boot off media
 - Prepare the filesystems
 - Restore
 - DOCUMENT and TEST the procedure
 - Emergency boot tapes only has limited number of normal system commands

Backing Up and Restoring the System
Filesystems

- Bootable backup tapes on some Unix versions
 - Created from live system
 - Self-restoring
 - Examples:
 - AIX’s mksysb utilities
 - It saves all of the filesystems in the root volume group (/, /usr, /var, /home, /tmp, etc)
 - `# mksysb -i /dev/rmt0`
 - To restore, boot from mksysb tape
 - HP-UX recovery tape
 - Run the command `mk_recovery`
Tape Special Files

- Tape drives often have names of
 - /dev/rmtN or /dev/rmt/N
 - Where N indicates the drive number
 - Include other characters as suffixes or prefixed to indicate
 - The density setting
 - Hardware compression setting
 - Rewinding setting
 - For example:
 - /dev/rmt/0mn

Moving data between systems

- In general, tar, cpio and dump archives are readable on many systems. But,
 - Block size difference
 - Archive format incompatibilities
 - Byte order difference
 - Compressed archives
Remote backup and restores

- Why remote?
 - No local tape drive
 - Faster tape drive on another system

- Command rdump and rrestore
 - The device name is
 - Host:local_device
 - #rdump Of anchor:/dev/nst0 /spare
 - Permission control
 - .rhosts

Database Backup & Recovery

- Database can be build on
 - Raw device
 - Unix files

- Database backup can be
 - Offline
 - No access to database at all.
 - Regular raw device/unix file backup can be applied
 - Online
 - Database is available to end users
 - On going transactions
 - modification to multiple devices/files with one transaction
 - Data integrity
 - Transaction log
 - Special backup commands/configuration
Database Backup & Recovery

- Example:
 - Sybase
 - Transaction log
 - Dump tape definition (size, device filename) inside the db
 - Dump command
 - Support multiple volume
 - Has to wait until tape is ready
 - Use non rewinding tape for multiple database.
 - Recovery is straightforward

- Example:
 - Oracle
 - Cold backup - shutting database down.
 - Incremental at filesystem level does not work
 - Recovery is ready.
 - Hot backup - turn on Archive mode
 - Archive log/undo log/redo log
 - Recover up to the point of failure
 - Backup mode
 - File system backup
 - RMAN (Support incremental)
 - Hot backup Recovery is a headache
Summary

- Backup is important, don’t neglect it
 - Strategy
 - Monitor
 - Test