## CS3621 Exercise 3 Solution (Fall 2005)

1. Consider the following two circular arcs joining at the origin: $\mathbf{f}(u)=(\cos (u+\pi / 2),-(1+\sin (u+\pi / 2)), 0)$ and $\mathbf{g}(v)=(-\cos (v+\pi / 2), 0,1-\sin (v+\pi / 2))$, where both $u$ and $v$ are in the range of 0 and $\pi$. Note that circular $\operatorname{arcs} \mathbf{f}(u)$ and $\mathbf{g}(v)$ lie on the $x y$ - and $x z$-coordinate planes, respectively. Analyze the continuity at the origin. More precisely, are $\mathbf{f}(u)$ and $\mathbf{g}(v) C^{1}, C^{2}, G^{1}$ or $G^{2}$ at the origin $\mathbf{f}(\pi)=\mathbf{g}(0)=(0,0,0)$ ? Are they curvature continuous?
Solution: Since $\sin \left(u+\frac{\pi}{2}\right)=\cos (u)$ and $\cos \left(u+\frac{\pi}{2}\right)=-\sin (u)$, the given functions can be rewritten as

$$
\mathbf{f}(u)=\langle-\sin (u),-(1+\cos (u)), 0\rangle \quad \text { and } \quad \mathbf{g}(v)=\langle\sin (v), 0,1-\cos (v)\rangle
$$

Thus, we have

$$
\begin{aligned}
\mathbf{f}^{\prime}(u) & =\langle-\cos (u), \sin (u), 0\rangle \\
\mathbf{f}^{\prime \prime}(u) & =\langle\sin (u), \cos (u), 0\rangle \\
\mathbf{g}^{\prime}(v) & =\langle\cos (v), 0, \sin (v)\rangle \\
\mathbf{g}^{\prime \prime}(v) & =\langle-\sin (v), 0, \cos (v)\rangle
\end{aligned}
$$

Since $\mathbf{f}(\pi)=\mathbf{g}(0)=\langle 0,0,0\rangle, \mathbf{f}(u)$ and $\mathbf{g}(v)$ are $C^{0}$ continuous at the origin.
Since $\mathbf{f}^{\prime}(\pi)=\mathbf{g}^{\prime}(0)=\langle 1,0,0\rangle, \mathbf{f}(u)$ and $\mathbf{g}(v)$ are $C^{1}$ continuous at the origin.
Since $\mathbf{f}^{\prime \prime}(\pi)=\langle 0,-1,0\rangle$ and $\mathbf{g}^{\prime \prime}(0)=\langle 0,0,1\rangle, \mathbf{f}(u)$ and $\mathbf{g}(v)$ are not $C^{2}$ continuous at the origin.
Since $\mathbf{f}(u)$ and $\mathbf{g}(v)$ are $C^{1}$ at the origin, they are $G^{1}$ at the origin.
Since $\mathbf{f}(u)$ and $\mathbf{g}(v)$ are $C^{1}$ at the origin, their tangent line at the origin is the $x$-axis. Since $\mathbf{f}^{\prime \prime}(\pi)=$ $\langle 0,-1,0\rangle$ and $\mathbf{g}^{\prime \prime}(0)=\langle 0,0,1\rangle$, we have $\mathbf{f}^{\prime \prime}(\pi)-\mathbf{g}^{\prime \prime}(0)=\langle 0,-1,-1\rangle$. Since this vector is not parallel to the tangent line, $\mathbf{f}(u)$ and $\mathbf{g}(v)$ are not $G^{2}$ continuous at the origin.
The following computes the curvatures of $\mathbf{f}(u)$ and $\mathbf{g}(v)$ :

$$
\begin{aligned}
\mathbf{f}^{\prime}(u) \times \mathbf{f}^{\prime \prime}(u) & =\langle 0,0,-1\rangle \\
\left|\mathbf{f}^{\prime}(u)\right| & =1 \\
\kappa_{\mathbf{f}}(u) & =\frac{\left|\mathbf{f}^{\prime}(u) \times \mathbf{f}^{\prime \prime}(u)\right|}{\left|\mathbf{f}^{\prime}(u)\right|}=1 \\
\mathbf{g}^{\prime}(v) \times \mathbf{g}^{\prime \prime}(v) & =\langle 0,-1,0\rangle \\
\left|\mathbf{g}^{\prime}(v)\right| & =1 \\
\kappa_{\mathbf{g}}(v) & =\frac{\left|\mathbf{g}^{\prime}(v) \times \mathbf{g}^{\prime \prime}(v)\right|}{\left|\mathbf{g}^{\prime}(v)\right|}=1
\end{aligned}
$$

Since $\kappa_{\mathbf{f}}(u)=\kappa_{\mathbf{g}}(v)=1, \mathbf{f}(u)$ and $\mathbf{g}(v)$ are curvature continuous at the origin.
2. Given six control points on the $x y$-plane $(0,-2),(-2,-2),(-2,2),(2,2),(2,-2)$ and $(0,-2)$, do the following:
(a) Compute the partition of unity at $u=0.5$.

Solution: The following are Bézier basis functions at $u=0.5$ :

$$
B_{5,0}(u)=\frac{5!}{0!(5-0)!} u^{0}(1-u)^{5-0}=1 \cdot 0.5^{5}=0.03125
$$

$$
\begin{aligned}
B_{5,1}(u) & =\frac{5!}{1!(5-1)!} u^{1}(1-u)^{5-1}=5 \cdot 0.5^{5}=0.15625 \\
B_{5,2}(u) & =\frac{5!}{2!(5-2)!} u^{2}(1-u)^{5-2}=10 \cdot 0.5^{5}=0.3125 \\
B_{5,3}(u) & =\frac{5!}{3!(5-3)!} u^{3}(1-u)^{5-3}=10 \cdot 0.5^{5}=0.3125 \\
B_{5,4}(u) & =\frac{5!}{4!(5-4)!} u^{4}(1-u)^{5-4}=5 \cdot 0.5^{5}=0.15625 \\
B_{5,5}(u) & =\frac{5!}{5!(5-5)!} u^{5}(1-u)^{5-5}=1 \cdot 0.5^{5}=0.03125
\end{aligned}
$$

Verify that the sum of these six terms is 1 .
(b) Use de Casteljau's algorithm to find the point on the curve that corresponds to $u=0.5$.

## Solution:



Thus, the point curve corresponding to $u=0.5$ is $\mathbf{C}(0.5)=(0,0.5)$.
(c) Subdivide the Bzier curve at $u=0.5$ and list the control points of the resulting curve segments. Solution: The first curve segment, defined on $[0,0.5]$, has control points $(0,-2),(-1,-2)$, $(-1.5,-1),(-1.25,0),(-0.625,0.5)$ and $(0,0.5)$, and the second segment, defined on $[0.5,1]$, has control points $(0,0.5),(0.625,0.5),(1.25,0),(1.5,-1),(1,-2)$ and $(0,-2)$. Please note the order or the control points of the second curve segment.
(d) Increase the degree of this curve to six and list the new set of control points.

Solution: The new set of control points is computed as follows:

$$
\mathbf{Q}_{0}=\mathbf{P}_{0}
$$

$$
\begin{aligned}
\mathbf{Q}_{1} & =\frac{1}{6} \mathbf{P}_{0}+\frac{5}{6} \mathbf{P}_{1}=\left(-\frac{5}{3},-2\right) \\
\mathbf{Q}_{2} & =\frac{2}{6} \mathbf{P}_{1}+\frac{4}{6} \mathbf{P}_{2}=\left(-2, \frac{2}{3}\right) \\
\mathbf{Q}_{3} & =\frac{3}{6} \mathbf{P}_{2}+\frac{3}{6} \mathbf{P}_{3}=(0,2) \\
\mathbf{Q}_{4} & =\frac{4}{6} \mathbf{P}_{3}+\frac{1}{6} \mathbf{P}_{4}=\left(2, \frac{2}{3}\right) \\
\mathbf{Q}_{5} & =\frac{5}{6} \mathbf{P}_{4}+\frac{1}{6} \mathbf{P}_{5}=\left(\frac{5}{3},-2\right) \\
\mathbf{Q}_{6} & =\mathbf{P}_{5}
\end{aligned}
$$

(e) The starting point and the ending point of this curve are the same $(0,-2)$. Discuss the continuity issue at the joining point. More precisely, is it $C^{1}, C^{2}, G^{1}, G^{2}$ or curvature continuous?
Solution: Since the join point is $\mathbf{P}_{0}=\mathbf{P}_{5}=(0,-2)$, what we need are the first and second derivatives at $\mathbf{P}_{0}$ and $\mathbf{P}_{5}$. First, we have $\mathbf{C}(0)=\mathbf{C}(1)=(0,-2)$ because a Bézier curve passes through the first and last control points. By the same reason, $\mathbf{C}^{\prime}(0)=5\left(\mathbf{P}_{1}-\mathbf{P}_{0}\right)=(-10,0)$ and $\mathbf{C}^{\prime}(1)=5\left(\mathbf{P}_{5}-\mathbf{P}_{4}\right)=(-10,0)$. The second derivative at 0 and 1 are $\mathbf{C}^{\prime \prime}(0)=5 \cdot 4 \cdot\left(\mathbf{P}_{2}-2 \mathbf{P}_{1}+\right.$ $\left.\mathbf{P}_{0}\right)=(40,80)$ and $\mathbf{C}^{\prime \prime}(1)=5 \cdot 4 \cdot\left(\mathbf{P}_{5}-2 \mathbf{P}_{4}+\mathbf{P}_{3}\right)=(-40,80)$. Now, we have the following:

- $C^{0}$-continuous: YES because $\mathbf{C}(0)=\mathbf{C}(1)=\mathbf{P}_{0}=\mathbf{P}_{1}=(0,-2)$.
- $C^{1}$ - and $G^{1}$ - continuous: YES because $\mathbf{C}^{\prime}(0)=\mathbf{C}^{\prime}(1)=(-10,0)$. It is $G^{1}$ because $C^{1}$ implies $G^{1}$.
- $C^{2}$-continuous: NO because $\mathbf{C}^{\prime \prime}(0)=(40,80) \neq \mathbf{C}^{\prime \prime}(1)=(-40,80)$.
- $G^{2}$-continuous: YES. The curve goes from the right side, crosses $\mathbf{P}_{5}$, and enters the left side. In other words, the "left" curve is the curve segment on $[u, 1]$ where $u$ is close to 1 , and the "right" curve is the curve segment on $[0, v]$ where $v$ is close to 0 . Now, the difference of the second derivative of the "left" curve and the second derivative of the "right" curve is $\mathbf{C}^{\prime \prime}(1)-\mathbf{C}^{\prime \prime}(0)=(-80,0)$. Since this vector is parallel to the tangent vector at $\mathbf{C}(0)=\mathbf{C}(1)$, the curve is of $G^{2}$-continuous at $(0,-2)$.
- Curvature Continuous: YES. The curvature at $\mathbf{C}(0)=\mathbf{P}_{0}$ is computed as follows:

$$
\kappa_{\mathbf{C}(0)}=\frac{\left|\mathbf{C}^{\prime}(0) \times \mathbf{C}^{\prime \prime}(0)\right|}{\left|\mathbf{C}^{\prime}(0)\right|^{3}}=\frac{|\langle-10,0,0\rangle \times\langle 40,80,0\rangle|}{|\langle-10,0,0\rangle|^{3}}=0.8
$$

The curvature at $\mathbf{C}(1)=\mathbf{P}_{5}$ is

$$
\kappa_{\mathbf{C}(1)}=\frac{\left|\mathbf{C}^{\prime}(1) \times \mathbf{C}^{\prime \prime}(1)\right|}{\left|\mathbf{C}^{\prime}(1)\right|^{3}}=\frac{|\langle-10,0,0\rangle \times\langle-40,80,0\rangle|}{|\langle-10,0,0\rangle|^{3}}=0.8
$$

Since $\kappa_{\mathbf{C}(0)}=\kappa_{\mathbf{C}(1)}$, the curve is curvature continuous at $(0,-2)$.

