CS3621 Introduction to Computing with Geometry Solutions to Drill Exercises - Basic Concepts

1. Find the line defined by points $(3,5)$ and $(7,14)$.

Solution: The line that contains two points (a, b) and (c, d) has an equation of

$$
\frac{y-b}{x-a}=\frac{d-b}{c-a}
$$

Since $a=3$ and $c=7$ and are not equal, the above equation is usable. Therefore, we have

$$
\frac{y-5}{x-3}=\frac{14-5}{7-3}
$$

Rearranging terms yields the answer to this question:

$$
9 x-4 y-7=0
$$

You can verify this answer by plugging $(3,5)$ and $(7,14)$ into the equation.
2. What is the distance from the origin to the line with equation $3 x+4 y+6=0$?

Solution: From the given equation, we have $A=3, B=4$ and $C=6$. Therefore, the distance from the origin to this line is

$$
\text { distance }=\frac{|C|}{\sqrt{A^{2}+B^{2}}}=\frac{6}{\sqrt{3^{2}+4^{2}}}=\frac{6}{5}=1.2
$$

3. Find the equation of the plane defined by base point \mathbf{B} and normal vector \mathbf{n}. Verify your result using $\mathbf{B}=\langle 3,4,5\rangle$ and $\mathbf{n}=\langle 1,1,1\rangle$.
Solution: The answer should be $\mathbf{X} \cdot \mathbf{n}-\mathbf{B} \cdot \mathbf{n}=0$, where \cdot is the inner product. Plugging the values for \mathbf{B} and \mathbf{n}, we have

$$
\mathbf{X} \cdot\langle 1,1,1\rangle-\langle 3,4,5\rangle \cdot\langle 1,1,1\rangle=0
$$

Expanding and rearranging yields:

$$
x+y+z-12=0
$$

4. What is the inner product and cross product of vectors $\mathbf{u}=\langle 1,3,5\rangle$ and $\mathbf{v}=\langle-2,0,4\rangle$. What is the length of the cross product? What is the angle between these two vectors?
Solution: The inner and cross products are

$$
\begin{aligned}
\langle 1,3,5\rangle \cdot\langle-2,0,4\rangle & =1 *(-2)+3 * 0+5 * 4=(-2)+0+20=18 \\
\langle 1,3,5\rangle \times\langle-2,0,4\rangle & =\langle | \begin{array}{ll}
3 & 5 \\
0 & 4
\end{array}\left|,-\left|\begin{array}{cc}
1 & 5 \\
-2 & 4
\end{array}\right|,\left|\begin{array}{cc}
1 & 3 \\
-2 & 0
\end{array}\right|\right\rangle=\langle 12,-14,6\rangle
\end{aligned}
$$

Since $|\langle 1,3,5\rangle|=\left(1^{2}+3^{2}+5^{2}\right)^{1 / 2}=\sqrt{35}$ and $|\langle-2,0,4\rangle|=\left((-2)^{2}+0^{2}+4^{2}\right)^{1 / 2}=\sqrt{20}$, the angle θ between $\langle 1,3,5\rangle$ and $\langle-2,0,4\rangle$ is computed as follows:

$$
\cos (\theta)=\frac{\langle 1,3,5\rangle \cdot\langle-2,0,4\rangle}{|\langle 1,3,5\rangle| *|\langle-2,0,4\rangle|}=\frac{18}{\sqrt{35} \sqrt{20}} \approx 0.68 \quad \text { and } \quad \theta=47.13^{\circ}
$$

The length of $\langle 1,3,5\rangle \times\langle-2,0,4\rangle$ is computed as

$$
|\langle 1,3,5\rangle \times\langle-2,0,4\rangle|=|\langle 12,-14,6\rangle|=\sqrt{12^{2}+(-14)^{2}+6^{2}}=\sqrt{144+196+36}=\sqrt{376} \approx 19.39
$$

5. Suppose a general second degree curve $A x^{2}+2 B x y+C y^{2}+2 D x+2 E y+F=0$ represents a conic curve. Use the concept of the line at infinity to prove that the curve is an ellipse, a hyperbola, or a parabola, if and only if $B^{2}-A C<0, B^{2}-4 A C>0$, or $B^{2}-A C=0$. This problem looks difficult; but, it should be easy if you understand the concept of the line at infinity covered in class. Try it.
Solution: What we covered in class is: a conic is an ellipse, hyperbola or a parabola if it intersects the line at infinity in no point, two points, and one point (or tangent).
Converting the given equation to a homogeneous one yields

$$
A x^{2}+2 B x y+C y^{2}+2 D x w+2 E y w+F w^{2}=0
$$

Setting $w=0$ means computing the intersection of the conic and the line at infinity. Thus, the intersection points are the solutions of $A x^{2}+2 B x y+C y^{2}=0$. Since all multiples of the same Euclidean point represent the same point in homogeneous coordinate, we could divide the whole equation by y^{2} if $y \neq 0$; otherwise, divide the whole equation by x^{2} if $y=0$. Note that x and y cannot be both zero, because the point becomes $(0,0,0)$, which is not a legal point in homogeneous coordinate. Let us assume $y \neq 0$. Thus, we have

$$
A\left(\frac{x}{y}\right)^{2}+2 B\left(\frac{x}{y}\right)+C=0
$$

Now solving for x / y (rather than x and y) yields

$$
\frac{x}{y}=\frac{-B \pm \sqrt{B^{2}-A C}}{A}
$$

Therefore, if $B^{2}-A C<0$ we have no real root and the conic is an ellipse; if $B^{2}-A C=0$, we have a double root and the conic is a parabola; and if $B^{2}-A C>0$, we have two real roots, and the conic is a hyperbola.
6. Convert the following second degree equation to its equivalent matrix form:

$$
3 x^{2}-5 x y+5 y^{2}+x+6 y+9=0
$$

Solution: The answer is

$$
\left[\begin{array}{ccc}
3 & -5 / 2 & 1 / 2 \\
-5 / 2 & 5 & 3 \\
1 / 2 & 3 & 9
\end{array}\right]
$$

7. What is the equation of the following conic curve in matrix form?

$$
\left[\begin{array}{ccc}
-1 & 4 & -3 \\
4 & 1 & 2 \\
-3 & 2 & 3
\end{array}\right]
$$

Solution: The answer is

$$
-x^{2}+8 x y+y^{2}-6 x+4 y+3=0
$$

8. Convert the following equations to their homogeneous form:
(a) $x^{2}+y^{2}+3 z^{2}-2 x y+3 x z+y z+3 x-5 y-6 z+10=0$

Solution: Replacing x, y and z with $x / w, y / w$ and z / w, respectively, we have

$$
\left(\frac{x}{w}\right)^{2}+\left(\frac{y}{w}\right)^{2}+3\left(\frac{z}{w}\right)^{2}-2\left(\frac{x}{w}\right)\left(\frac{y}{w}\right)+3\left(\frac{x}{w}\right)\left(\frac{z}{w}\right)+\left(\frac{y}{w}\right)\left(\frac{z}{w}\right)+3\left(\frac{x}{w}\right)-5\left(\frac{y}{w}\right)-6\left(\frac{z}{w}\right)+10=0
$$

Expanding the terms gives

$$
\frac{x^{2}}{w^{2}}+\frac{y^{2}}{w^{2}}+3 \frac{z^{2}}{w^{2}}-2 \frac{x y}{w^{2}}+3 \frac{x z}{w^{2}}+\frac{y z}{w^{2}}+3 \frac{x}{w}-5 \frac{y}{w}-6 \frac{z}{w}+10=0
$$

Clearing terms by multiplying w^{2} to both sides yields the desired answer:

$$
x^{2}+y^{2}+3 z^{2}-2 x y+3 x z+y z+3 x w-5 y w-6 z w+10 w^{2}=0
$$

(b) $\left(x^{2}+x y^{2}-y^{2}\right)^{2}-4\left(x-y^{2}\right)-1=0$

Solution: Replacing x, y and z with $x / w, y / w$ and z / w, respectively, we have

$$
\left(\left(\frac{x}{w}\right)^{2}+\frac{x}{w}\left(\frac{y}{w}\right)^{2}-\left(\frac{y}{w}\right)^{2}\right)^{2}-4\left(\frac{x}{w}-\left(\frac{y}{w}\right)^{2}\right)-1=0
$$

This equation can be rewritten as:

$$
\left(\frac{x^{2}}{w^{2}}+\frac{x y^{2}}{w^{3}}-\frac{y^{2}}{w^{2}}\right)^{2}-4\left(\frac{x}{w}-\frac{y^{2}}{w^{2}}\right)-1=0
$$

Since w 's highest degree is 6 (i.e., the square of $x y^{2} / w^{3}$ is $\left.x^{2} y^{4} / w^{6}\right)$, multiplying both sides with w^{6} gives

$$
w^{6}\left(\frac{x^{2}}{w^{2}}+\frac{x y^{2}}{w^{3}}-\frac{y^{2}}{w^{2}}\right)^{2}-4 w^{6}\left(\frac{x}{w}-\frac{y^{2}}{w^{2}}\right)-w^{6}=0
$$

Taking this w^{6} into each terms yields:

$$
\left(w^{3} \frac{x^{2}}{w^{2}}+w^{3} \frac{x y^{2}}{w^{3}}-w^{3} \frac{y^{2}}{w^{2}}\right)^{2}-4\left(w^{6} \frac{x}{w}-w^{6} \frac{y^{2}}{w^{2}}\right)-w^{6}=0
$$

Therefore, the desired result is

$$
\left(x^{2} w+x y^{3}+y^{2} w\right)^{2}-4\left(x w^{5}-y^{2} w^{4}\right)-w^{6}=0
$$

9. Convert the following homogeneous equations to their non-homogeneous form:
(a) $x y^{4}+x^{2} y^{2} w+y^{4} w+2 x y w^{3}-3 x w^{4}+w^{5}=0$

Solution: The degree of this homogeneous equation is 5 . Thus, dividing the whole equation by w^{5} gives

$$
\frac{x y^{4}}{w^{5}}+\frac{x^{2} y^{2} w}{w^{5}}+\frac{y^{4} w}{w^{5}}+2 \frac{x y w^{3}}{w^{5}}-3 \frac{x w^{4}}{w^{5}}+\frac{w^{5}}{w^{5}}=0
$$

Rearrange the terms:

$$
\frac{x}{w} \frac{y^{4}}{w^{4}}+\frac{x^{2}}{w^{2}} \frac{y^{2}}{w^{2}} \frac{w}{w}+\frac{y^{4}}{w^{4}} \frac{w}{w}+2 \frac{x}{w} \frac{y}{w} \frac{w^{3}}{w^{3}}-3 \frac{x}{w} \frac{w^{4}}{w^{4}}+1=0
$$

Replacing $x / w, y / w$ and z / w with x, y and z, respectively, yields the desired result:

$$
x y^{4}+x^{2} y^{2}+y^{4}+2 x y-3 x+1=0
$$

(b) $\left(x^{2}+y^{2}+z w\right)^{2}+4 w\left(x^{3}+x y w+y w^{2}\right)+w^{4}=0$

Solution: The degree of this equation is 4 . Dividing the whole equation with w^{4} gives:

$$
\frac{\left(x^{2}+y^{2}+z w\right)^{2}}{w^{4}}+4 \frac{w\left(x^{3}+x y w+y w^{2}\right)}{w^{4}}+\frac{w^{4}}{w^{4}}=0
$$

Moving w^{4} into each term gives:

$$
\left(\frac{x^{2}}{w^{2}}+\frac{y^{2}}{w^{2}}+\frac{z w}{w^{2}}\right)^{2}+4 \frac{w}{w}\left(\frac{x^{3}}{w^{3}}+\frac{x y w}{w^{3}}+\frac{y w^{2}}{w^{3}}\right)+1=0
$$

Rearranging terms gives:

$$
\left(\left(\frac{x}{w}\right)^{2}+\left(\frac{y}{w}\right)^{2}+\frac{z}{w} \frac{w}{w}\right)^{2}+4\left(\left(\frac{x}{w}\right)^{3}+\frac{x}{w} \frac{y}{w} \frac{w}{w}+\frac{y}{w} \frac{w^{2}}{w^{2}}\right)+1=0
$$

Replacing x / w and y / w with x and y, respectively, yields the desired result:

$$
\left(x^{2}+y^{2}+z\right)^{2}+4\left(x^{3}+x y+y\right)+1=0
$$

10. Find a projective transformation that maps the line determined by two points $(1,0,1)$ and $(0,1,1)$, in homogeneous coordinate, to the line at infinity.
Solution: A projective transformation can be represented by a 3×3 matrix. Since both $(1,0,1)$ and $(0,1,1)$ are mapped to infinity, we have the following:

$$
\left[\begin{array}{c}
a_{1} \\
b_{1} \\
0
\end{array}\right]=\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{c}
a_{2} \\
b_{2} \\
0
\end{array}\right]=\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

where $a_{1}, b_{1}, a_{2}, b_{2}$, and $a, \ldots i$ are unknown. Note that in the above $(1,0,1)$ and $(0,1,1)$ are mapped to $\left(a_{1}, b_{1}, 0\right)$ and $\left(a_{2}, b_{2}, 0\right)$, which are points at infinity. Because the third component of $\left(a_{1}, b_{1}, 0\right)$ and $\left(a_{2}, b_{2}, 0\right)$ are the inner products of the third row of the transformation matrix (i.e., $\left.[g, h, i]\right)$ and $(1,0,1)$ and $(0,1,1)$, respectively, we have

$$
0=[g, h, i] \cdot\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=g+i \quad \text { and } \quad 0=[g, h, i] \cdot\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=h+i
$$

From these two equation, it is clear that if $g=h=-1$ and $i=1,(1,0,1)$ and $(0,1,1)$ are both mapped to the infinity, and, as a result, we have the following:

$$
\left[\begin{array}{c}
a_{1} \\
b_{1} \\
0
\end{array}\right]=\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
-1 & -1 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{c}
a_{2} \\
b_{2} \\
0
\end{array}\right]=\left[\begin{array}{ccc}
a & b & c \\
d & e & f \\
-1 & -1 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

Since a projective transformation matrix has to be non-singular (i.e., determinant being non-zero in this case), we can choose a, \ldots, f freely as long as the transformation is non-singular. The easiest one would be the following:

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right]
$$

The determinant of the above matrix is 1 and the transformation is non-singular. Since we have

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

$(1,0,1)$ and $(0,1,1)$ are mapped to $(1,0,0)$ and $0,1,0)$, respectively. Thus, the line determined by $(1,0,1)$ and $(0,1,1)$ is mapped to the line at infinity.

