## CS3621 Introduction to Computing with Geometry Drill Exercises: Basic Concepts

1. Find the line defined by points $(3,5)$ and $(7,14)$.
2. What is the distance from the origin to the line with equation $3 x+4 y+6=0$ ?
3. Find the equation of the plane defined by base point $\mathbf{B}$ and normal vector $\mathbf{v}$. Verify your result using $\mathbf{B}=\langle 3,4,5\rangle$ and $\mathbf{n}=\langle 1,1,1\rangle$.
4. What is the inner product and cross product of vectors $\mathbf{u}=\langle 1,3,5\rangle$ and $\mathbf{v}=\langle-2,0,4\rangle$. What is the length of the cross product? What is the angle between these two vectors?
5. Suppose a general second degree curve $A x^{2}+2 B x y+C y^{2}+2 D x+2 E y+F=0$ represents a conic curve. Use the concept of the line at infinity to prove that the curve is an ellipse, a hyperbola, or a parabola, if and only if $B^{2}-A C<0, B^{2}-4 A C>0$, or $B^{2}-A C=0$. This problem looks difficult; but, it should be easy if you understand the concept of the line at infinity covered in class. Try it.
6. Convert the following second degree equation to its equivalent matrix form:

$$
3 x^{2}-5 x y+5 y^{2}+x+6 y+9=0
$$

7. What is the equation of the following conic curve in matrix form?

$$
\left[\begin{array}{rrr}
-1 & 4 & -3 \\
4 & 1 & 2 \\
-3 & 2 & 3
\end{array}\right]
$$

8. Convert the following equations to their homogeneous form:
(a) $x^{2}+y^{2}+3 z^{2}-2 x y+3 x z+y z+3 x-5 y-6 z+10=0$
(b) $\left(x^{2}+x y^{2}-y^{2}\right)^{2}-4\left(x-y^{2}\right)-1=0$

Expanding the given equations could easily cause calculation errors. Try not to expand the second one.
9. Convert the following homogeneous equations to their non-homogeneous form:
(a) $x y^{4}+x^{2} y^{2} w+y^{4} w+2 x y w^{3}-3 x w^{4}+w^{5}=0$
(b) $\left(x^{2}+y^{2}+z w\right)^{2}+4 w\left(x^{3}+x y w+y w^{3}\right)+w^{4}=0$

Expanding the given equations could easily cause calculation errors. Try not to expand the second one.
10. Find a projective transformation that maps the line determined by two points $(1,0,1)$ and $(0,1,1)$, in homogeneous coordinate, to the line at infinity.

