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CS3621 Introduction to Computing with Geometry
Solutions Drill Exercises – Geometric Transformations and Simple Models

1. Suppose the point (1, 1, 1) is rotated about the x-, then y-, and then z- axis 45◦. What are the results?
Write down the rotation matrices and the results.

Solution: Simple. Do it yourself.

2. Suppose the point (1, 1, 1) is first rotated about the x-axis 45◦ and then about the z-axis 30◦. What
is the rotation matrix and the result?

Solution: The matrices of rotating about the x- and z-axis 45◦, Rx(45◦) and Rz(45◦), are
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Therefore, the desired rotation has a transformation matrix as follows (note the order of multiplication):

Rz(45◦) · Rx(45◦) =
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The desired result is computed as follows:

Rz(45◦) · Rx(45◦) ·
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3. Suppose the point (1, 1, 1) is first rotated about the y-axis 45◦ and then translated in the direction of
〈2, 2, 2〉. What is the resulting transformation matrix and the result?

Solution: Translation in the direction of 〈2, 2, 2〉 has transformation matrix:

T (〈2, 2, 2〉) =
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Rotating about the y-axis 45◦ has transformation matrix

Ry(45◦) =
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Thus, a rotation followed by a translation yields the following transformation matrix:

T (〈2, 2, 2〉) ·Ry(45◦) =
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Thus, (1, 1, 1) is transformed to
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The new point is (2 +
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4. Suppose the point (1, 1, 1) is first translated in the direction of 〈2, 2, 2〉 and then rotated about the
y-axis 45◦. What is the resulting transformation matrix and the result? Is this result identical to the
one you obtained in the previous problem?

Solution: The transformation matrix is

Ry(45◦) · T (〈2, 2, 2〉) =
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Therefore, (1, 1, 1) is transformed to
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The new point is (3
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5. An application needs to transform a unit square whose vertices are (0,0), (1,0), (1,1) and (0,1) to a
parallelogram whose vertices are (0,0), (1,0), (3,3) and (2,3) as show below. Explain how you will
achieve this. Write down each individual transformation and its transformation matrix, compute the
composite transformation, and verify your result. Note that the answer is not unique.

Solution: This can be done by first scaling in the y-direction, which transforms the unit square to
a rectangle of vertices (0,0), (1,0), (1,3) and (0,3), followed by a shearing in the x-direction. This
procedure is shown below.
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The scaling transformation matrix is
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
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The shear in x-direction is
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where α is an unknown. Since this shear sends (1,3) to (3,3), it satisfies the following:
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Therefore, we have 3 = 1 + 3α. Solving for α, we have α = 2/3 and the shear matrix
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Consequently, the desired transformation matrix is
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6. Suppose we have a tetrahedron with four vertices A = (0, 0, 0), B = (1, 0, 0), C = (0, 1, 0) and
D = (0, 0, 1), and edges AB, BC, AC, DA, DB and DC (see the figure below). The four facets are
ABC (bottom), ABD (left), BCD (right) and ACD (back). Design a wireframe representation for
this tetrahedron solid.

Solution: Simple. Do it yourself.

7. We can extend the wireframe data structure to include facet information as shown below. In addition
to a vertex table and an edge table, we have a facet table whose f-th entry represents facet f and
contains a pointer to a linked list, a vertex list. Each node of a vertex list contains a vertex of that facet
and the list is built in either clockwise or counter-clockwise order. This representation or its variants
are frequently used in graphics programming.
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Answer the following important questions:

(a) Suppose V , E and F are the number of vertices, edges, and facets. Can you come up with a very
accurate estimation of memory usage? What is the worst case? You can assume one word for
each integer or pointer.
Solution: The vertex and edge tables require 3V and 2E words, respectively. The facet table
needs F words. But, because we do not have any information about the length of each vertex
list (i.e., the number of vertices of each facet), it is difficult to have an accurate estimate. Since
a facet has at most V − 1 vertices (why?), each vertex list has 2(V − 1) words, and, as a result,
F × 2(V − 1) + F = F (2V − 1) words are required to store the facet information. The total
memory requirement is at most 3V + 2E + F (2V − 1) words.

(b) It is also possible that the nodes of a vertex list store edges rather than vertices. Would this help
solve the previous problem?
Solution: Similar to the previous one. Do it yourself.

(c) Suppose we know that on average each facet has k vertices (e.g., k = 3 for triangles). Would this
information help?
Solution: Yes, it does help. In this case, each vertex list has k nodes and requires 2k words. The
total memory requirement is about 3V + 2E + (F + F × 2k) = 3V + 2E + F (2k + 1) words.

(d) Given a vertex v, develop an algorithm that lists all adjacent edges of v. An edge is adjacent to
v if that edge has v as one of its vertices. How many comparisons are required (in worst case)?
Solution: Because all adjacent information between vertices and edges are recorded in the edge
table, we can do a look-up and extract the desired information:

procedure ListEdges(v);
begin

for e := 1 to E do
if edge e contains vertex v then

print edge e
end if

end

In the above code, E is the number of edges. Each edge in the edge table is examined, and is
printed if that edge contains the given vertex. Since two comparisons are required for examining
each edge, the total number of comparisons required is 2E.

(e) Given a vertex v, develop an algorithm that lists all adjacent facets of v. A facet is adjacent to v
if that facet has v as its vertex. How many comparisons are required (in worst case)?
Solution: This is similar to the previous problem. However, we search all vertex lists of the facet
table.
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procedure ListFacets(v);
begin

for f := 1 to F do
for each node of the vertex list of facet f do

if that node is vertex v then
print facet f
exit the inner for loop;

end if
end

Since every vertex list that is part of the facet table has to be searched, the number of comparisons
is equal to the total length of all vertex lists. It is difficult to estimate a worst case; but, if all
facets are triangles, then 3F comparisons are required.

(f) Given an edge e, develop an algorithm that lists all adjacent facets of e. A facet is adjacent to e
if that facet has e as its edge. How many comparisons are required (in worst case)?
Solution: There are exactly two facets adjacent to an edge. An edge has two end vertices, and,
they should be adjacent to each other in a vertex list. The following is a possible algorithm:

procedure ListFacets(e);
begin

for each facet f do
begin

This := the first node of f ’s vertex list;
Next := This’s next node;
while Next is not null do

begin
if the end vertices of e are This and Next then

print facet f and go for next facet f ;
end if
This := Next;
Next := This’s next node;

end
Next := the first node of f ’s vertex list; /* wrap around */
if the end vertices of e are This and Next then

print facet f ;
end if

end
end

Note that wrapping around is necessary when reaching the end of a vertex list. You can also make
this algorithm more efficient. Because an edge has at most two facets, the algorithm stops after
printing the second facet. Again, it is difficult to accurately estimate the number of comparisons
required because we don’t know the structure of facets. But, if all facets are triangles, each
vertex list contains three nodes. Since determining if an edge contains two vertices requires two
comparisons, determining if a vertex list contains an edge requires 3 × 2 = 6 comparisons. Thus,
the worst case is the case in which all vertex lists are scanned, and the total number of comparisons
is 6F .

(g) Given a facet f , develop an algorithm that lists all adjacent facets of f . A facet is adjacent to f
if they have a common edge or a common vertex. How many comparisons are required (in worst
case)?
Solution: This is an extension to the previous problem. First, find all edges of the given facet
by going through its vertex list. Second, for each edge, print out its adjacent facet that is not the
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given one.

(h) The concepts of star and link are very important in polyhedron modeling and editing. Suppose
a polyhedron’s facets are all triangles. Given a vertex, the yellow one in the figure below, the
star of this vertex consists of all triangles that are adjacent to this vertex listed in clockwise or
counter-clockwise order. The link of this vertex consists of all vertices, listed in either clockwise
or counter-clockwise order, that are on the edges adjacent to but different from the given vertex.
Note that once we have a properly ordered vertices list, we can connect them together to form a
link as shown in blue in the figure below.

Develop an algorithm that accepts a vertex and reports the link (in either vertex or edge form)
of this vertex. From this link information, you can easily generate the star.
Solution: This problem is an involved one. In particular, you need to generate the vertices (or
edges) of the link in order. The idea of solving this problem is that we go around all facets that
contain the given vertex v. Here is a possible algorithm:

procedure FindLink(v);
begin

Find an edge e that contains v using ListEdge(v);
Find the adjacent facets of e, f1st and flast using ListFacets(e);
Let f := f1st;
while f 6= flast do

begin
Find the edges e, e1 and e2 of facet f ;
/* note that facet f contains edge e */
Let e1 be the edge that contains the given vertex v;
print edge e2; /* found one edge in the link */
Let e := e1; /* move to the next triangle */
Find the adjacent facets f1 and f2 of edge e;
/* note that one of f1 and f2 is f ! */
if f1 = f then

f := f2

else
f := f1

end if
end

end
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Let us see how this algorithm works. See the figure below. Facets f1st and flast mark the “first”
and “last” facets that share a common edge e that is adjacent to vertex v. Initially, f1st is
the “current” facet f . As long as f is not the last facet flast, we keep going so that all facets
surrounding the given vertex v can be traversed.

f
1st f

last

f

e

e1
e2

new f

e

v

Now, when we are processing facet f , since it is a triangle, it has three edges, one of them must
be e and one of the other two that does not contain v is on the link! Therefore, we print out the
edge that does not contain v, and move on to the edge that contains v but is not e. This is the
new edge e.
From this new e, we can determine its adjacent facets, one of these two facets is f , which has
been processed, and the other becomes the new f . In this way, with an edge e and its adjacent
facet f , we can traverse the link in order, although we do not know if this order is clockwise or
counter-clockwise because there is no orientation information stored in the tables.
This algorithm looks simple; but, the complexity lies in the calls to find adjacent facets of a
given edge. Keep in mind that the number of comparisons depends on the number of facets (i.e.,
triangles) surrounding v. So, an accurate estimate is difficult to obtain.


