CS3911 Introduction to Numerical Methods with Fortran Exam 2 Solutions

1. Accuracy and Reliability

(a) $[20$ points] Let ϵ be a very small positive number (i.e., $\epsilon \approx 0$) but $1 / \epsilon$ will not cause overflow. Consider the following system of linear equations:

$$
\left[\begin{array}{ll}
\epsilon & 1 \\
1 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

First, solve this system of linear equations with and without partial pivoting using finite precision arithmetics. Then, discuss the major reason or reasons that can explain the difference(s) between the two solutions. You should provide a general argument rather than an argument based on a fixed precision. A convincing and to-the-point argument is required. As a result, just stating a "reason" such as "it is because of cancelation" or "overflow" will receive zero point. Note also that "prove-by-example" is not acceptable.
Solution: Without pivoting, one multiplies $-1 / \epsilon$ to the first equation and adds the result to the second. This yields the following:

$$
\left[\begin{array}{cc}
\epsilon & 1 \\
0 & 1-1 / \epsilon
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
1 \\
2-1 / \epsilon
\end{array}\right]
$$

Since ϵ is small, $1 / \epsilon$ is large. As a result, $-1 / \epsilon$ is the dominating term in both $1-1 / \epsilon$ and $2-1 / \epsilon$. In other word, the equation $(1-1 / \epsilon) y=2-1 / \epsilon$ would numerically become

$$
\left(-\frac{1}{\epsilon}\right) y \approx-\frac{1}{\epsilon}
$$

Backward substitution yields $y=1$. Plugging $y=1$ into the first equation $\epsilon x+y=1$ yields $x=0$.
With pivoting, the system becomes the following after a row swap:

$$
\left[\begin{array}{ll}
1 & 1 \\
\epsilon & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Multiplying the first equation by $-\epsilon$ and adding the result to the second yields:

$$
\left[\begin{array}{cc}
1 & 1 \\
0 & 1-\epsilon
\end{array}\right] \cdot\left[\begin{array}{c}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
2 \\
1-2 \epsilon
\end{array}\right]
$$

Since ϵ is very small, it does not contribute much to $1-\epsilon$ and $1-2 \epsilon$. As a result, $1-\epsilon \approx 1$ and $1-2 \epsilon \approx 1$, and the second equation $(1-\epsilon) y=1-2 \epsilon$ numerically becomes $y=1$. Plugging $y=1$ into the first equation gives $x=1$.
Obviously, $x=y=1$ is the correct numerical solution if ϵ is small. The reason for the nonpivoting solution to go wrong is the rounding error in computing $1-1 / \epsilon$ and $2-1 / \epsilon$ if $1 / \epsilon$ is very large. In this case, rounding error makes both terms nearly equal to $-1 / \epsilon$ numerically. Consequently, we have $y=1$ which is still correct. But, since ϵ is very small, $x=1-\epsilon$ will have rounding error again. This time, the impact of ϵ is so small that becomes insignificant compared with 1 . Therefore, $x=0$!

For example, on a 7-digit computer, if $\epsilon=0.00000001$, which is not a very small number, we have $1 / \epsilon=100,000,000$. Then, $1-1 / \epsilon=-99,999,999$ and $2-1 / \epsilon=-99,999,998$. Both would be rounded to 7 digits and the result is 0.1×10^{9}.
This example shows that pivoting is necessary.

2. Linear Algebra

(a) [5 points] Suppose a matrix A has the following LU-decomposition using 2 row swaps and 3 column swaps. Compute the determinant of A. You should show all computation steps. Only providing an answer and/or using a wrong method receives zero point.

$$
L=\left[\begin{array}{rrrr}
1 & & & \\
-1 & 1 & & \\
1 & -1 & 1 & \\
0 & 1 & 2 & 1
\end{array}\right] \quad \text { and } \quad U=\left[\begin{array}{llll}
1 & 1 & 0 & 2 \\
& 2 & 1 & 0 \\
& & 3 & 1 \\
& & & 4
\end{array}\right]
$$

Solution: The determinant is the product of all diagonal entries if no pivoting is used. If pivoting is used, this product should be multiplied by $(-1)^{\text {(no. of row and column swaps). }}$. Since the product is $24=1 \times 2 \times \times 3 \times 4$ and since the total number of row and column swaps is 5 , the desired answer is $-24=(-1)^{5} \times(24)$.
(b) [15 points] Find the LU-decomposition of the following matrix without pivoting. You should show all computation steps. Only providing an answer and/or using a wrong method receives zero point.

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
2 & 2 & 1 & -2 \\
0 & 4 & 5 & 0 \\
-1 & 0 & 6 & 5
\end{array}\right]
$$

Solution: A 4×4 lower triangular matrix L has the following form, where \times denotes a value to be determined in the process of Gaussian elimination.

$$
L=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\times & 1 & 0 & 0 \\
\times & \times & 1 & 0 \\
\times & \times & \times & 1
\end{array}\right]
$$

Multiplying $-2,0$ and 1 to the first row of A and adding the results to the second, third and fourth rows, respectively, we have L and U as follows:

$$
L=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & \times & 1 & 0 \\
-1 & \times & \times & 0
\end{array}\right] \quad \text { and } \quad U=\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
0 & 2 & 1 & 0 \\
0 & 4 & 5 & 0 \\
0 & 0 & 6 & 4
\end{array}\right]
$$

The multipliers (i.e., 2, 0 and -1) are saved to the first column of L with opposite signs. Then, multiplying -2 and 0 to the second row of A (or U above) and adding the results to the third and fourth rows, respectively, yields:

$$
L=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
-1 & 0 & \times & 1
\end{array}\right] \quad \text { and } \quad U=\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
0 & 2 & 1 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 6 & 4
\end{array}\right]
$$

The multipliers (i.e., 2 and 0) are saved to the second column of L with opposite signs.
Finally, multiplying the third row by -2 and adding the result to the fourth, and saving the multiplier with opposite sign to column 3 of L yields:

$$
L=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
2 & 1 & 0 & 0 \\
0 & 2 & 1 & 0 \\
-1 & 0 & 2 & 1
\end{array}\right] \quad \text { and } \quad U=\left[\begin{array}{rrrr}
1 & 0 & 0 & -1 \\
0 & 2 & 1 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

The above L and U are the desired results.
(c) [12 points] Use Gauss-Seidel method to solve the following system of linear equations, and fill the table below with your results. The initial value (i.e., iteration 0) is $x=y=z=0$, and you only do two iterations (i.e., iterations 1 and 2).

$$
\begin{aligned}
3 x+y-z & =6 \\
-x+4 y+2 z & =10 \\
x+y+6 z & =16
\end{aligned}
$$

Solution: The solution is shown below:

Iteration	x	y	z
0	0	0	0
1	2	3	$\frac{11}{6}=1.8333333 \ldots$
2	$\frac{29}{18}=1.6555555 \ldots$	$\frac{143}{72}=1.9861111 \ldots$	$\frac{893}{432}=2.0671296 \ldots$

First, the equations must be transformed to the following:

$$
\begin{align*}
x & =\frac{1}{3}(6-y+z) \tag{1}\\
y & =\frac{1}{4}(10+x-2 z) \tag{2}\\
z & =\frac{1}{6}(16-x-y) \tag{3}
\end{align*}
$$

- Iteration 1:

- Since the initial values are $x=0, y=0$ and $z=0$, Equation (1) gives the new $x=(6-0+0) / 3=2$.
- Now we have $x=2, y=0$ and $z=0$, they are used in Equation (2) to compute the new $y=(10+2-2 \times 0) / 4=3$.
- This gives $x=2, y=3$ and $z=0$. They are used in Equation (3) to compute the new $z=(16-2-3) / 6=11 / 6$. This completes the first iteration.

- Iteration 2:

- Iteration 2 starts with $x=2, y=3$ and $z=11 / 6$, the new x from Equation (1) is $x=\left(6-3+\frac{11}{6}\right) / 3=\frac{29}{18}$.
- Now we have $x=\frac{29}{18}, y=3$ and $z=\frac{11}{6}$, Equation (2) gives $y=\left(10+\frac{29}{18}-2 \times \frac{11}{6}\right) / 4=$ $\frac{143}{72}$.
- So far we have $x=\frac{29}{18}, y=\frac{143}{72}$ and $z=\frac{11}{6}$. They are used in Equation (3) to compute the new $z=\left(16-\frac{29}{18}-\frac{143}{72}\right) / 6=\frac{893}{432}$. This completes the second iteration. At the end of the second iteration, we have $x=\frac{29}{18}, y=\frac{143}{72}$ and $z=\frac{893}{432}$.
(d) [15 points] Suppose a program read in the following system of linear equations:
$A \cdot x=B \quad$ where $A=\left[\begin{array}{rr}1 & 2 \\ -1 & 2\end{array}\right], \quad B=\left[\begin{array}{l}4 \\ 0\end{array}\right] \quad$ and $\quad A=L \cdot U=\left[\begin{array}{rr}1 & 0 \\ -1 & 1\end{array}\right] \cdot\left[\begin{array}{ll}1 & 2 \\ 0 & 4\end{array}\right]$
and computed $x=3$ and $y=2$. This solution is inaccurate. Use the iterative refinement method to improve the accuracy of this "solution." You have to show all computation steps using the given $L \mathbf{U}$-decomposition, and explain how you get the results. Otherwise (e.g., only providing an answer and/or asking me to guess your intention from a bunch of numbers), you will receive zero point.
Solution: The following shows all computation steps:
- Compute the error vector r :

$$
r=B-A \cdot X=\left[\begin{array}{l}
4 \\
0
\end{array}\right]-\left[\begin{array}{rr}
1 & 2 \\
-1 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{c}
-3 \\
-1
\end{array}\right]
$$

- Forward substitution to find T in $L \cdot T=r$:

The equation of $L \cdot T=r$ is the following:

$$
\left[\begin{array}{cc}
1 & \\
-1 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
t_{1} \\
t_{2}
\end{array}\right]=\left[\begin{array}{c}
-3 \\
-1
\end{array}\right]
$$

Forward substitution gives $t_{1}=-3$. Plugging $t_{1}=-3$ into the second equation $-t_{1}+t_{2}=$ -1 yields $t_{2}=-4$.

- Backward substitution to find Δ in $U \cdot \Delta=T$:

The equation of $U \cdot \Delta=T$ is shown below:

$$
\left[\begin{array}{ll}
1 & 2 \\
& 4
\end{array}\right] \cdot\left[\begin{array}{l}
\delta_{1} \\
\delta_{2}
\end{array}\right]=\left[\begin{array}{c}
-3 \\
-4
\end{array}\right]
$$

Backward substitution gives $\delta_{2}=-1$. Plugging $\delta_{2}=-1$ into the first equation $\delta_{1}+2 \delta_{2}=$ -3 yields $\delta_{1}=-1$. Therefore, $\Delta=\left[\delta_{1}, \delta_{2}\right]^{T}=[-1,-1]^{T}$.

- Compute the new X :

The new X is computed as $X+\Delta$: new $X=[3,2]^{T}+[-1,-1]^{T}=[2,1]^{T}$.

- Verify the computed result:

Since $B-A \cdot[2,1]^{T}=[0,0]^{T}$, we have computed the correct solution to the system of linear equations.

3. Polynomial Interpolation

(a) [10 points] Given a polynomial of degree n as follows,

$$
P_{n}(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}
$$

Develop a way to evaluate $P_{n}(x)$ with n multiplications. You should provide an algorithm and its complexity analysis. A method that does not achieve $O(n)$ receives zero point.
Solution: The given polynomial can be rewritten in a nested form as follows:

$$
P_{n}(x)=a_{0}+\left(a_{1}+\left(a_{2}+\left(a_{3}+\left(\cdots\left(a_{n-1}+a_{n} x\right) x\right) \cdots\right) x\right) x\right)
$$

For example, $P_{4}(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}=a_{0}+\left(a_{1}+\left(a_{2}+\left(a_{3}+a_{4} x\right) x\right) x\right) x$. In this way, only n multiplications are needed (i.e., $O(n)$). On the other hand, since $a_{i} x^{i}$ requires i multiplications, the total number of multiplications with a direct evaluation of the power form is $0+1+2+\cdots+n=n(n+1) / 2$ (i.e., $O\left(n^{2}\right)$).
The following is a possible algorithm, which assumes that coefficients a_{i} 's are in array a(), x is in variable x , and Px has the result:

$$
\begin{aligned}
& \mathrm{Px}=\mathrm{a}(\mathrm{n}) \\
& \mathrm{DO} i=\mathrm{n}-1,0,-1 \\
& \quad \mathrm{Px}=\mathrm{a}(\mathrm{i})+\mathrm{Px}^{\star} \mathrm{x} \\
& \text { END DO }
\end{aligned}
$$

Since this DO loop iterates n times, each of which uses exactly one multiplication, the order of complexity is $O(n)$.
One may suggest the following $O(n)$ implementation:

```
Px =a(0)
Power = x
DO i = 1, n
    Px = Px + a(i)*Power
    Power = Power*x
END DO
```

Although it is an $O(n)$ method, it uses two multiplications per iteration and the total number of multiplications is $2 n$. This is certainly slower than the nested form.
(b) [15 points] Find the Lagrange interpolating polynomial for the data points $\left(x_{0}, y_{0}\right)=(-2,0)$, $\left(x_{1}, y_{1}\right)=(0,4)$ and $\left(x_{2}, y_{2}\right)=(2,0)$. You should show all computation steps. Only providing an answer and/or using a wrong method receives zero point.
Solution: The degree 2 Lagrange interpolating polynomial $P_{2}(x)$ is

$$
P_{2}(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} y_{1}+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} y_{2}
$$

Since $y_{0}=y_{2}=0$, the above immediately reduces to the following:

$$
P_{2}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)} y_{1}
$$

Plugging $x_{0}=-2, x_{1}=0, x_{2}=2$ and $y_{1}=4$ into the above yields:

$$
P_{2}(x)=\frac{(x-(-2))(x-2)}{(0-(-2))(0-2)} 4=-(x+2)(x-2)
$$

Hence, the desired degree 2 Lagrange interpolating polynomial is $P_{x}(2)=-(x+2)(x-2)$
(c) [8 points] Add a new data point $\left(x_{3}, y_{3}\right)=(3,-5)$ to this interpolating polynomial. That is, use this newly available data point to update the interpolating polynomial obtained in the previous problem. You should show all computation steps. Only providing an answer and/or using a wrong method receives zero point. You will also receive zero point if you do not use the update technique.
Solution: Since the degree increases from 2 to 3 , one more term is needed:

$$
\text { new term }=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{3}-x_{0}\right)\left(x_{3}-x_{1}\right)\left(x_{3}-x_{2}\right)} y_{3}
$$

Since $x_{3}=3$ and $y_{3}=-5$, the new term is

$$
\text { new term }=-\frac{1}{3}(x+2) x(x-2)
$$

Since only one term (i.e., the y_{1} term) has to be updated, we have

$$
\text { new } y_{1} \text { term }=\left(\text { old } y_{1} \text { term }\right) \times \frac{x-x_{3}}{x_{1}-x_{3}}=\frac{1}{3}(x+2)(x-2)(x-3)
$$

Finally, the new degree 3 Lagrange interpolating polynomial $P_{3}(x)$ is

$$
P_{3}(x)=\frac{1}{3}(x+2)(x-2)(x-3)-\frac{1}{3}(x+2) x(x-2)
$$

