
1

Part II
Process Management

Chapter 7: Deadlocks

2

System Model
System resources are utilized in the following way:

Request: If a process makes a request to use a system
resource which cannot be granted immediately, then the
requesting process blocks until it can acquire the
resource.
Use:The process can operate on the resource.
Release: The process releases the resource.

Deadlock: A set of processes is in a deadlock state
when every process in the set is waiting for an
event that can only be caused by another process in
the set.

3

Deadlock: Necessary Conditions
For a deadlock to occur, each of the following four
conditions must hold.

Mutual Exclusion: At least one resource must
be held in a non-sharable way.
Hold and Wait: A process must be holding a
resource and waiting for another.
No Preemption: Resource cannot be preempted.
Circular Wait: A waits for B, B waits for C, C
waits for A.

4

Handling Deadlocks
Deadlock Prevention and Avoidance: Make
sure deadlock will never happen.

Prevention: Ensure one of the four conditions fails.
Avoidance: The OS needs more information so that
it can determine if the current request can be
satisfied or delayed.

Deadlock : Allow a system to enter a deadlock
situation, detect it, and recover.
Ignore Deadlock: Pretend deadlocks never
occur in the system.

5

Deadlock Prevention: 1/4
Mutual Exclusion

By ensuring that at least one of the four
conditions cannot hold, we can prevent the
occurrence of a deadlock.
Mutual Exclusion: Some sharable resources
must be accessed exclusively (e.g., printer),
which means we cannot deny the mutual
exclusion condition.

6

Deadlock Prevention: 2/4
Hold and Wait

No process can hold some resources and then
request for other resources.
Two strategies are possible:

A process must acquire all resources before it runs.
When a process requests for resources, it must hold
none (i.e., returning resources before requesting for
more).

Resource utilization may be low, since many
resources will be held and unused for a long time.
Starvation is possible. A process that needs some
popular resources my have to wait indefinitely.

7

Deadlock Prevention: 3/4
No Preemption

Resources that are being held by the requesting
process are preempted. There are two strategies:

If a process is holding some resources and requesting for
some others that are being held by other processes, the
resources of the requesting process are preempted. The
preempted resources become available.
If the requested resources are not available:

If they are being held by processes that are waiting for
additional resources, these resources are preempted
and given to the requesting process.
Otherwise, the requesting process waits until the
requested resources become available. While it is
waiting, its resources may be preempted.
This works only if the state of the process and resources
can be saved and restored easily (e.g., CPU & memory).

8

Deadlock Prevention: 4/4
Circular Waiting

To break the circular waiting condition, we can
order all resource types (e.g., tapes, printers).
A process can only request resources higher than the
resource types it holds.
Suppose the ordering of tapes, disks, and printers
are 1, 4, and 8. If a process holds a disk (4), it can
only ask a printer (8) and cannot request a tape (1).
A process must release some lower order resources
to request a lower order resource. To get tapes (1), a
process must release its disk (4).
In this way, no deadlock is possible. Why?

9

Deadlock Avoidance: 1/5
Each process provides the maximum number of
resources of each type it needs.
With these information, there are algorithms that
can ensure the system will never enter a deadlock
state. This is deadlock avoidance.
A sequence of processes <P1, P2, …, Pn> is a safe
sequence if for each process Pi in the sequence, its
resource requests can be satisfied by the remaining
resources and the sum of all resources that are
being held by P1, P2, …, Pi-1. This means we can
suspend Pi and run P1, P2, …, Pi-1 until they
complete. Then, Pi will have all resources to run.

10

Deadlock Avoidance: 2/5
A state is safe if the system can
allocate resources to each
process (up to its maximum, of
course) in some order and still
avoid a deadlock.
In other word, a state is safe if
there is a safe sequence.
Otherwise, if no safe sequence
exists, the system state is unsafe.
An unsafe state is not
necessarily a deadlock state.
On the other hand, a deadlock
state is an unsafe state.

safe

unsafe

deadlock

11

Deadlock Avoidance: 3/5
A system has 12 tapes and three processes A, B, C.
At time t0, we have:

Then, <B, A, C> is a safe sequence (safe state).
The system has 12-(5+2+2)=3 free tapes.
Since B needs 2 tapes, it can take 2, run, and
return 4. After B completes, the system has (3-
2)+4=5 tapes. A now can take all 5 tapes and run.
Finally, A returns 10 tapes for C to take 7 of them.

729C
224B
5510A

Will needCurrent holdingMax needs

3 free tapes

12

Deadlock Avoidance: 4/5
A system has 12 tapes and three processes A, B, C. At
time t1, C has one more tape:

The system has 12-(5+2+3)=2 free tapes.
At this point, only B can take these 2 and run. It
returns 4, making 4 free tapes available.
But, none of A and C can run, and a deadlock occurs.
The problem is due to granting C one more tape.

639C
224B
5510A

Will needCurrent holdingMax needs

13

Deadlock Avoidance: 5/5
A deadlock avoidance algorithm ensures that
the system is always in a safe state. Therefore,
no deadlock can occur.
Resource requests are granted only if in doing
so the system is still in a safe state.
Consequently, resource utilization may be
lower than those systems without using a
deadlock avoidance algorithm.

14

Banker’s Algorithm: 1/2
The system has m resource types and n processes.
Each process must declare its maximum needs.
The following arrays are used:

Available[1..m]: one entry for each resource. Available[i]=k
means resource type i has k units available.
Max[1..n,1..m]: maximum demand of each process.
Max[i,j]=k means process i needs k units of resource j.
Allocation[1..n,1..m]: resources allocated to each process.
Allocation[i,j]=k means process i is currently allocated k
units of resource j.
Need[1..n,1..m]: the remaining resource need of each
process. Need[i,j]=k means process i needs k more units of
resource j.

15

Banker’s Algorithm: 2/2
We will use A[i,*] to indicate the i-th row of
matrix A.
Given two arrays A[1..m] and B[1..m], A ≤ B if A[i]
≤ B[i] for all i. Given two matrices A[1..n,1..m]
and B[1..n,1..m], A[i,*] ≤B[i,*] if A[i,j] ≤B[i,j] for
all j.
When a resource request is made by process i, this
algorithm calls the Resource-Request algorithm to
determine if the request can be granted. The
Resource-Request algorithm calls the Safety
Algorithm to determine if a state is safe.

16

Safety Algorithm
1. Let Work[1..m] and Finish[1..n] be two working

arrays.
2. Work := Available and Finish[i]=FALSE for all i
3. Find an i such that both

Finish[i] = FALSE // process i is not yet done
Need[i,*] ≤ Work // its need can be satisfied

If no such i exists, go to Step 5
4. Work = Work + Allocation[i,*] // run it and reclaim

Finish[i] = TRUE // process i completes
go to Step 3

5. If Finish[i] = TRUE for all i, the system is in a
safe state.

17

Resource-Request Algorithm
1. Let Request[1..n,1..m] be the request matrix. Request[i,j]=k

means process i requests k units of resource j.
2. If Request[i,*]≤Need[i,*], go to Step 3. Otherwise, it is an

error.
3. If Request[i,*]≤Available, go to Step 4. Otherwise, process i

waits.
4. Do the following:

Available = Available – Request[i,*]
Allocation[i,*] = Allocation[i,*]+Request[i,*]
Need[i,*] = Need[i,*] – Request[i,*]

If the result is a safe state (Safety Algorithm), the request is
granted. Otherwise, process i waits and the
resource-allocation tables are restored back to the original.

18

Example: 1/4
Consider a system of 5 processes A, B, C, D and E, and 3
resource types (X=10, Y=5, Z=7). At time t0, we have

A safe sequence is <B,D,E,C,A>. Since B’s [1,2,2]≤ Avail’s
[3,3,2], B runs. Then, Avail=[2,0,0]+[3,3,2]=[5,3,2]. D runs
next. After this, Avail=[5,3,2]+[2,1,1]=[7,4,3]. E runs next.
Avail=[7,4,3]+[0,0,2]=[7,4,5]. Since C’s [6,0,0]≤Avail=[7,4,5], C
runs. After this, Avail=[7,4,5]+[3,0,2]=[10,4,7] and A runs.
There are other safe sequences: <D,E,B,A,C>, <D,B,A,E,C>, …

134334200E
110222112D
006209203C
221223002B

233347357010A
ZYXZYXZYXZYX

Allocation Max Need=Max-Alloc Available

19

Example: 2/4
Now suppose process B asks for 1 X and 2 Zs. More
precisely, RequestB = [1,0,2]. Is the system still in a safe state
if this request is granted?
Since RequestB = [1,0,2] ≤ Available = [3,3,2], this request
may be granted as long as the system is safe.
If this request is actually granted, we have the following:

134334200E
110222112D
006209203C
020223203B

032347357010A
ZYXZYXZYXZYX

Allocation Max Need=Max-Alloc Available

[3,0,2]=[2,0,0]+[1,0,2] [0,2,0]=[1,2,2]-[1,0,2] [2,3,0]=[3,3,2]-[1,0,2]

20

Example: 3/4

Is the system in a safe state after this allocation?
Yes, because the safety algorithm will provide a
safe sequence <B,D,E,A,C>. Verify it by
yourself.
Therefore, B’s request of [1,0,2] can safely be
made.

134334200E
110222112D
006209203C
020223203B

032347357010A
ZYXZYXZYXZYX

Allocation Max Need=Max-Alloc Available

21

Example: 4/4

After this allocation, E’s request RequestE=[3,3,0]
cannot be granted since RequestE=[3,3,0] ≤[2,3,0] is
false.
A’s request RequestA=[0,2,0] cannot be granted because
the system will be unsafe.
If RequestA=[0,2,0] is granted, Available=[2,1,0].
None of the five processes can finish and the system is
unsafe.

134334200E
110222112D
006209203C
020223203B

032347357010A
ZYXZYXZYXZYX

Allocation Max Need=Max-Alloc Available

22

Deadlock Detection
If a system does not use a deadlock prevention
or a deadlock avoidance algorithm, then a
deadlock situation may occur. Thus, we need

An algorithm that can examine the system
state to determine if a deadlock has
occurred. This is a deadlock detection
algorithm.
An algorithm that can help recover from a
deadlock. This is a recovery algorithm.

A deadlock detection algorithm does not have
to know the maximum need Max and the
current need Need. It uses only Available,
Allocation and Request.

23

Deadlock Detection Algorithm
1. Let Work[1..m] and Finish[1..n] be two working arrays.
2. Work := Available and Finish[i]=FALSE for all i
3. Find an i such that both

Finish[i] = FALSE // process i is not yet done
Request[i,*] ≤ Work // its request can be satisfied

If no such i exists, go to Step 5
4. Work = Work + Allocation[i,*] // run it and reclaim

Finish[i] = TRUE // process i completes
go to Step 3

5. If Finish[i] = TRUE for all i, the system is in a safe state. If
Finish[i] = FALSE, then process Pi is deadlocked.

Use Request here rather than Need in the safety algorithm

24

Example: 1/2

Suppose maximum available resource is [7,2,6] and the
current state of resource allocation is shown above.
Is the system deadlocked? No. We can run A first, making
Available=[0,1,0].
Then, we run C, making Available=[3,1,3]. This is followed
by D, making Available=[5,2,4], and followed by B and E.

200200E
001112D
000303C
202002B

000000010A
ZYXZYXZYX

Allocation Request Available

25

Example: 2/2

Suppose C requests for one more resource Z.
Now, A can run, making Available=[0,1,0].
However, none of B, C, D and E can run.
Therefore, B, C, D and E are deadlocked!

200200E
001112D
100303C
202002B

000000010A
ZYXZYXZYX

Allocation Request Available

26

The Use of a Detection Algorithm
Frequency

If deadlocks occur frequently, then the
detection algorithm should be invoked
frequently.
Once per hour or whenever CPU utilization
becomes low (i.e., below 40%). Low CPU
utilization means more processes are
waiting.

27

How to Recover: 1/3
When a detection algorithm determines a
deadlock has occurred, the algorithm may
inform the system administrator to deal with it.
Of, allow the system to recover from a deadlock.
There are two options.

Process Termination
Resource Preemption

These two options are not mutually exclusive.

28

Recovery: Process Termination: 2/3

Abort all deadlocked processes
Abort one process at a time until the deadlock cycle
is eliminated
Problems:

Aborting a process may not be easy. What if a
process is updating or printing a large file? The
system must find some way to maintain the state
of the file and printer before they can be reused.
The termination may be determined by the
priority/importance of a process.

29

Recovery: Resource Preemption: 3/3

Selecting a victim: which resources and which
processes are to be preempted?
Rollback: If we preempt a resource from a
process, what should be done with that process?

Total Rollback: abort the process and restart it
Partial Rollback: rollback the process only as far as
necessary to break the deadlock.

Starvation: We cannot always pick the same
process as a victim. Some limit must be set.

