Part ||
Process M anagement

Chapter 7. Deadlocks

System Model

1 System resour ces are utilized in the following way:

“*Request: If aprocess makesarequest to use a system
resour ce which cannot be granted immediately, then the
requesting process blocks until it can acquirethe
I esour ce.

“»Use: The process can operate on the resour ce.
“*Release: The processreleasesthe resource.

dDeadlock: A set of processesisin a deadlock state
when every processin the set iswaiting for an
event that can only be caused by another processin
the set.

2

Deadlock: Necessary Conditions

 For adeadlock to occur, each of the following four
conditions must hold.

“**Mutual Exclusion: At least one resource must
be held in a non-sharable way.

“*Hold and Wait: A process must be holding a
resour ce and waiting for another.

“*No Preemption: Resource cannot be preempted.

*Circular Wait: A waitsfor B, B waitsfor C, C
waitsfor A.

Handling Deadlocks

J Deadlock Prevention and Avoidance: Make
sur e deadlock will never happen.
+*Prevention: Ensure one of the four conditionsfails.

“*Avoidance: The OS needs more information so that
It can deter mineif the current request can be
satisfied or delayed.
dDeadlock : Allow a system to enter a deadlock
situation, detect it, and recover.

dIgnore Deadlock: Pretend deadlocks never
occur in the system.

Deadlock Prevention: 1/4
Mutual Exclusion

By ensuring that at least one of the four
conditions cannot hold, we can prevent the
occurrence of a deadlock.

A Mutual Exclusion: Some shar able resour ces
must be accessed exclusively (e.g., printer),
which means we cannot deny the mutual
exclusion condition.

Deadlock Prevention: 2/4
Hold and Walit

I No process can hold some resour ces and then
reguest for other resour ces.

dTwo strategies are possible:
A process must acquire all resources beforeit runs.

“*When a processreguestsfor resources, it must hold
none (i.e., returning resour ces before requesting for
more).

d Resour ce utilization may be low, since many
resour ces will be held and unused for along time.

d Starvation ispossible. A processthat needs some
popular resour ces my haveto wait indefinitely.

Deadlock Prevention: 3/4

No Preemption

JResourcesthat are being held by the requesting
process are preempted. Therearetwo strategies.

“*|f a processisholding some resour ces and requesting for
some othersthat are being held by other processes, the
resour ces of the reguesting process are preempted. The
preempted resour ces become available.

“*|f therequested resources are not available:

|f they are being held by processesthat are waiting for
additional resour ces, these resour ces ar e preempted
and given to therequesting process.

Otherwise, the requesting process waits until the
requested resour ces become available. Whileit is
waiting, itsresour ces may be preempted.

Thisworksonly if the state of the process and resour ces
can be saved and restored easily (e.g., CPU & memory).

Deadlock Prevention: 4/4
Circular Waiting

dTo break thecircular waiting condition, we can
order all resourcetypes(e.g., tapes, printers).

A process can only reguest resour ces higher than the
resour cetypesit holds.

d Suppose the ordering of tapes, disks, and printers
arel, 4,and 8. If aprocessholdsadisk (4), it can
only ask a printer (8) and cannot request atape (1).

A process must release some lower order resour ces
torequest a lower order resource. To get tapes(1), a
process must release its disk (4).

dIn thisway, no deadlock ispossible. Why?

Deadlock Avoidance: 1/5

d Each process provides the maximum number of
resour ces of each type it needs.

dWith these information, there are algorithms that
can ensurethe system will never enter a deadlock
state. Thisisdeadlock avoidance.

J A sequence of processes<P,, P,, ..., P> Isasafe
sequence if for each process P, in the sequence, its
resour ce reguests can be satisfied by theremaining
resour ces and the sum of all resourcesthat are
being held by P, P, ..., P,.;. Thismeanswe can
suspend P, and run Py, P,, ..., P,_yuntil they
complete. Then, P, will have all resourcesto run.

9

Deadlock Avoidance: 2/5

A stateissafeif the system can
allocate resourcesto each
process (up to its maximum, of
cour se) in some order and still deadlock
avoid a deadlock.

d Inother word, a stateissafeif
thereisa safe sequence.

Otherwise, if no safe sequence
exists, the system state is unsafe.

J An unsafe state is not
necessarily a deadlock state.
On the other hand, a deadlock
stateis an unsafe state.

safe

10

Deadlock Avoidance: 3/5
A system has 12 tapes and three processes A, B, C.

At timet,, we have:
Max needs | Currentholding | Wi
A 10 5 5
B 4 2 2
C 9 \ 2 / 7
\

3 freetapes

dThen, <B, A, C> Isa safe sequence (safe state).

dThe system has 12-(5+2+2)=3 free tapes.

dSince B needs 2 tapes, it can take 2, run, and
return 4. After B completes, the system has (3-
2)+4=5tapes. A now can takeall 5tapesand run.
Finally, A returns 10 tapesfor Ctotake 7 of them.

Deadlock Avoidance: 4/5

A system has 12 tapes and three processes A, B, C. At
timet,, C has one more tape:

Max needs | Current holding | Will need
A 10 5 5
B 4 2 2
C 9 £ 3 76

dThesystem has 12-(5+2+3)5’2 free tapé.:

At thispoint, only B can takethese 2 and run. It
returns 4, making 4 free tapes available.

JBut, noneof A and C can run, and a deadlock occurs.
dThe problem isdueto granting C one moretape.

12

Deadlock Avoidance: 5/5

A deadlock avoidance algorithm ensures that
the system isalwaysin a safe state. Therefore,
no deadlock can occur.

JResourcereguests are granted only if in doing
so the system is still in a safe state.

d Consequently, resour ce utilization may be
lower than those systems without using a
deadlock avoidance algorithm.

13

Banker’'s Algorithm: 1/2

dThe system has m resour ce types and n processes.
d Each process must declare its maximum needs.

dThefollowing arrays ar e used:

“*Available[1..m]: oneentry for each resource. Available[i]=k
meansresour cetypei hask unitsavailable.

“*Max[1..n,1..m]: maximum demand of each process.
Max[1,]]=k means process | needs k units of resourcej.

“*Allocation[1..n,1..m]: resour ces allocated to each process.
Allocation[i,j]=k means processi iscurrently allocated k
units of resource|.

“*Need[1..n,1..m]: the remaining resour ce need of each
process. Need[i,j]=k means processi needs k more units of
resourcej.

14

Banker’'s Algorithm: 2/2

dWewill use A[1,*] to indicate thei-th row of
matrix A.

dGiventwo arrays A[1..m] and B[1..m], A <B if A[l]
<BJi] for all i. Given two matricesA[1..n,1..m]
and B[1..n,1..m], A[i,*] <BJ[i,*] if A[i,jJ] <BJi,j] for
all j.

JWhen aresourcereguest ismade by processi, this
algorithm callsthe Resource-Request algorithm to
determineif therequest can begranted. The
Resour ce-Request algorithm callsthe Safety
Algorithm to determineif a state is safe.

15

Safety Algorithm

Let Work[1..m] and Finish[1..n] be two working
arrays.

Work := Available and Finisn[i]=FALSE for all |

Find an 1 such that both
* Finish[i] =FALSE /I processi isnot yet done
“* Need[I,*] <Work // its need can be satisfied
If nosuch i exists, goto Step 5
Work = Work + Allocation[i,*] // run it and reclaim
Finish[i] = TRUE // processi completes
goto Step 3

If Finish[i] = TRUE for all i, thesystem isin a
safe state.

16

Resource-Request Algorithm

L et Request[1..n,1..m] betherequest matrix. Request[i,j]=k
means process i requests k units of resourcej.

|f Request[i,*]<Need[i,*], goto Step 3. Otherwise, it isan
error.

|f Request[i,*] <Available, goto Step 4. Otherwise, processi|
waits.

Do the following:
Available = Available — Request[i,*|
Allocation[i,*] = Allocation[i,*]+Request[i,*]
Need[i,*] = Need[i,*] — Request[i,*]
If theresult isa safe state (Safety Algorithm), therequest is
granted. Otherwise, processi waitsand the
resour ce-allocation tables arerestored back totheoriginal.

17

Example: 1/4

1 Consider a system of 5 processesA, B, C,D and E, and 3
resour ce types (X=10, Y=5, Z=7). At timet,, we have

Allocation Max Need=Max-Alloc Available
X|Y|Z]|X|Y|Z|X|Y|Z]|X|Y|Z
Alo|1|0]|7|5|3|7|4|3]3|]3]2
Bl2|o|0]|3|2|2|1|2]|2
c|3|0|2]9|0|2]|]6]|]0]0O0
D|2|1|1]2]|2]2]0]|1]|1
ElO|O|2]4|3|3]|4|3]|1
A safesequenceis<B,D,E,C,A>. SinceB’s[1,2,2]< Avail’s
[3,3,2], Bruns. Then, Avail=[2,0,0]+[3,3,2]=[5,3,2]. D runs
next. After this, Avail=[5,3,2]+[2,1,1]=[7,4,3]. E runsnext.

4 Avail=[7,4,3]+[0,0,2]=[7,4,5]. Sinhce C's[6,0,0]<Avail=[7,4,5], C
runs. After this, Avail=[7,4,5]+[3,0,2]=[10,4,7] and A runs.

d Thereareother safe sequences. <D,E,B,A,C>,<D,B,AE,Cz, ...

Example: 2/4

J Now suppose process B asksfor 1 X and 2 Zs. More
precisely, Requesty = [1,0,2]. Isthe system still in a safe state
If thisrequest is granted?
d Since Request; = [1,0,2] < Available = [3,3,2], thisrequest
may be granted aslong asthe system is safe.
d If thisrequest isactually granted, we have the following:

Allocation Max Need=Max-Alloc Available
x| y|lz|x|[y|z[x]|y]z]x]xlz
Alolalofl7[s5]s|7]l4el3]2]3]0"
Blia o] 2: 32|20 2] oy "kl

c| 3o 290 2] 6o 0

pl2/l 11|22 2]0/ 1|1

E 2l4a]3]3 3| 1
[3,0,2]=[2,0,0]+[1,0,2] [0,2,0]=[1,2,2]-[1,0,2] [2,3,0]=][3,3,2]

11.02]

Example: 3/4

Allocation Max Need=Max-Alloc Available

X|Ylz|x|Yy|z|x]|Y]|z]|x].X.l]Z
Alolalo]|7|5|3]7]4)3[]2]3]|0]
Blis|o| 2y sl2]2fo]2]oy "
cl 3ol 2]9]o0]|2]67070
pDl2(1]|1]2]2]|2]0]1
Elo|oO 4133|443

d1sthe system in a safe state after this allocation?

dYes, because the safety algorithm will provide a
safe sequence<B,D,E,A,C>. Verify it by
your self.

dTherefore, B’srequest of [1,0,2] can safely be
made.

20

Example: 4/4

Allocation Max Need=Max-Alloc Available
XY | Z|X|Y|Z|X|Y|Z|X|Y|Z
AlOoO|1|O0)} 7|53} 7]|4]|]3]2|]3]0
Bl 3|0 2]|3|2|2]]0]|2]|0
c|3|0|2}]J]9|0|2]|1]6|]0]O0
Dl2|1|1)12|2|2]|]0|1]1
EJ] OO0 24| 3|3}|4]|3]|1

 After thisallocation, E’srequest Request.=[3,3,0]
]cc:alnnot be granted since Request.=[3,3,0] <[2,3,0] is
alse.

d A’srequest Request,=[0,2,0] cannot be granted because
the system will be unsafe.
d If Request,=[0,2,0] isgranted, Available=[2,1,0].

1 None of the five processes can finish and the system is
unsafe.
21

Deadlock Detection

If asystem does not use a deadlock prevention
or a deadlock avoidance algorithm, then a
deadlock situation may occur. Thus, we need

“*An algorithm that can examine the system
stateto deter mineif a deadlock has
occurred. Thisisa deadlock detection
algorithm.

“*An algorithm that can help recover from a
deadlock. Thisisarecovery algorithm.

A deadlock detection algorithm does not have
to know the maximum need Max and the
current need Need. It usesonly Available,
Allocation and Request.

4.

S.

Deadlock Detection Algorithm

Let Work[1..m] and Finish[1..n] betwo working arrays.
Work := Available and Finish[i]=FALSE for all i
Find an i such that both
“ Finish[i] =FALSE // processiisnot yet done
| Request[i,*] <Work | // itsrequest can be satisfied
If nosuch | exts, goto Step 5
Work = Work + Allocation[i,*] // run it and reclaim
Finish[i] = TRUE \ // processi completes
goto Step 3

If Finish[i] = TRUE foNall I, the system isin a safe state. |f
Finish[i] = FALSE, then\process P, is deadlocked.

Use Request here rather than Need in the safety algorithm =

Example: 1/2

Allocation Request Available

X1Y|Z|X]|Y|Z]|X]|Y]|Z
AlO0Ol1]0]0,0]0]0|01|O0
Bl12(0]0]2|0] 2
C|]3]0|3]10;0]O0
D12 |1]111]0|0
E]0[0] 20|02

 Suppose maximum availableresourceis|[7,2,6] and the
current state of resour ce allocation is shown above.

d Isthe system deadlocked? No. Wecan run A first, making
Available=[0,1,0].

d Then, werun C, making Available=[3,1,3]. Thisisfollowed
by D, making Available=[5,2,4], and followed by B and E, ,

Example: 2/2

Allocation Request Available

vyizlx|ylz|lx]|y]z
Alol1]o]lo|lo]lolo]o]oO
Bl2|o|lo]2]0]|2
cl{a|o|3fo|of1;
Dl21]1]|1]l0] 0
Elojo|2|0]o0]2

J Suppose C requests for one moreresource
dNow, A can run, making Available=[0,1,0].

JHowever, noneof B, C, D and E can run.
Therefore, B, C, D and E are deadlocked!

The Use of a Detection Algorithm

d Freguency

“*|f deadlocks occur frequently, then the
detection algorithm should be invoked
frequently.

“*Once per hour or whenever CPU utilization
becomeslow (i.e., below 40%). Low CPU
utilization means more processes are
waiting.

26

How to Recover: 1/3

dWhen a detection algorithm determines a
deadlock hasoccurred, the algorithm may
Inform the system administrator to deal with it.
Of, allow the system to recover from a deadlock.

dTherearetwo options.
“*Process Termination
“*Resour ce Preemption
d These two options are not mutually exclusive.

27

Recovery: Process Termination: 2/3

JAbort all deadlocked processes

JAbort one process at atime until the deadlock cycle
Iseliminated
dProblems:

“*Aborting a process may not beeasy. What if a
processisupdating or printing alargefile? The
system must find some way to maintain the state
of thefileand printer beforethey can bereused.

“*Thetermination may be deter mined by the
priority/importance of a process.

28

Recovery: Resource Preemption: 3/3

d Selecting a victim: which resour ces and which

J

Orocesses areto be preempted?
Rollback: |If we preempt aresourcefrom a

orocess, what snould be done with that process?
“»Total Rollback: abort the processand restart it

*»Partial Rollback: rollback the processonly asfar as
necessary to break the deadlock.

d Starvation: We cannot always pick the same

processasavictim. Somelimit must be set.

29

