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Part II
Process Management

Chapter 7: Deadlocks
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System Model
System resources are utilized in the following way:

Request: If a process makes a request to use a system 
resource which cannot be granted immediately, then the 
requesting process blocks until it can acquire the 
resource.
Use:The process can operate on the resource.
Release: The process releases the resource.

Deadlock: A set of processes is in a deadlock state 
when every process in the set is waiting for an 
event that can only be caused by another process in 
the set.
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Deadlock: Necessary Conditions
For a deadlock to occur, each of the following four 
conditions must hold.

Mutual Exclusion:  At least one resource must 
be held in a non-sharable way.
Hold and Wait: A process must be holding a 
resource and waiting for another.
No Preemption: Resource cannot be preempted.
Circular Wait: A waits for B, B waits for C, C 
waits for A.
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Handling Deadlocks
Deadlock Prevention and Avoidance: Make 
sure deadlock will never happen.

Prevention: Ensure one of the four conditions fails.
Avoidance: The OS needs more information so that 
it can determine if the current request can be 
satisfied or delayed.

Deadlock : Allow a system to enter a deadlock 
situation, detect it, and recover.
Ignore Deadlock: Pretend deadlocks never 
occur in the system.
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Deadlock Prevention: 1/4
Mutual Exclusion

By ensuring that at least one of the four 
conditions cannot hold, we can prevent the 
occurrence of a deadlock.
Mutual Exclusion: Some sharable resources 
must be accessed exclusively (e.g., printer), 
which means we cannot deny the mutual 
exclusion condition.  
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Deadlock Prevention: 2/4
Hold and Wait

No process can hold some resources and then 
request for other resources.
Two strategies are possible:

A process must acquire all resources before it runs.
When a process requests for resources, it must hold 
none (i.e., returning resources before requesting for 
more).

Resource utilization may be low, since many 
resources will be held and unused for a long time.
Starvation is possible.  A process that needs some 
popular resources my have to wait indefinitely.
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Deadlock Prevention: 3/4
No Preemption

Resources that are being held by the requesting 
process are preempted. There are two strategies:

If a process is holding some resources and requesting for 
some others that are being held by other processes, the 
resources of the requesting process are preempted.  The 
preempted resources become available.
If the requested resources are not available:

If they are being held by processes that are waiting for  
additional resources, these resources are preempted 
and given to the requesting process.
Otherwise, the requesting process waits until the 
requested resources become available.  While it is 
waiting, its resources may be preempted.
This works only if the state of the process and resources 
can be saved and restored easily (e.g., CPU & memory).
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Deadlock Prevention: 4/4
Circular Waiting

To break the circular waiting condition, we can 
order all resource types (e.g., tapes, printers).
A process can only request resources higher than the 
resource types it holds.
Suppose the ordering of tapes, disks, and printers 
are 1, 4, and 8.  If a process holds a disk (4), it can 
only ask a printer (8) and cannot request a tape (1).
A process must release some lower order resources 
to request a lower order resource.  To get tapes (1), a 
process must release its disk (4).
In this way, no deadlock is possible.  Why?
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Deadlock Avoidance: 1/5
Each process provides the maximum number of 
resources of each type it needs.
With these information, there are algorithms that 
can ensure the system will never enter a deadlock 
state.  This is deadlock avoidance.
A sequence of processes <P1, P2, …, Pn> is a safe 
sequence if for each process Pi in the sequence, its 
resource requests can be satisfied by the remaining
resources and the sum of all resources that are 
being held by P1, P2, …, Pi-1.  This means we can 
suspend Pi and run P1, P2, …, Pi-1 until they 
complete.  Then, Pi will have all resources to run.
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Deadlock Avoidance: 2/5
A state is safe if the system can 
allocate resources to each 
process (up to its maximum, of 
course) in some order and still 
avoid a deadlock.
In other word, a state is safe if 
there is a safe sequence.  
Otherwise, if no safe sequence 
exists, the system state is unsafe.
An unsafe state is not 
necessarily a deadlock state.  
On the other hand, a deadlock 
state is an unsafe state.

safe

unsafe

deadlock
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Deadlock Avoidance: 3/5
A system has 12 tapes and three processes A, B, C.  
At time t0, we have:

Then, <B, A, C> is a safe sequence (safe state).
The system has 12-(5+2+2)=3 free tapes.
Since B needs 2 tapes, it can take 2, run, and 
return 4.  After B completes, the system has (3-
2)+4=5 tapes.  A now can take all 5 tapes and run.  
Finally, A returns 10 tapes for C to take 7 of them.

729C
224B
5510A

Will needCurrent holdingMax needs

3 free tapes
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Deadlock Avoidance: 4/5
A system has 12 tapes and three processes A, B, C.  At 
time t1, C has one more tape:

The system has 12-(5+2+3)=2 free tapes.
At this point, only B can take these 2 and run.  It 
returns 4, making 4 free tapes available.
But, none of A and C can run, and a deadlock occurs.
The problem is due to granting C one more tape.

639C
224B
5510A

Will needCurrent holdingMax needs
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Deadlock Avoidance: 5/5
A deadlock avoidance algorithm ensures that 
the system is always in a safe state.  Therefore, 
no deadlock can occur.
Resource requests are granted only if in doing 
so the system is still in a safe state.
Consequently, resource utilization may be 
lower than those systems without using a 
deadlock avoidance algorithm.
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Banker’s Algorithm: 1/2
The system has m resource types and n processes.
Each process must declare its maximum needs.
The following arrays are used:

Available[1..m]: one entry for each resource.  Available[i]=k
means resource type i has k units available.
Max[1..n,1..m]: maximum demand of each process.  
Max[i,j]=k means process i needs k units of resource j.
Allocation[1..n,1..m]: resources allocated to each process.  
Allocation[i,j]=k means process i is currently allocated k
units of resource j.
Need[1..n,1..m]: the remaining resource need of each 
process.  Need[i,j]=k means process i needs k more units of 
resource j.
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Banker’s Algorithm: 2/2
We will use A[i,*] to indicate the i-th row of 
matrix A.
Given two arrays A[1..m] and B[1..m], A ≤ B if A[i]
≤ B[i] for all i.  Given two matrices A[1..n,1..m]
and B[1..n,1..m], A[i,*] ≤B[i,*] if A[i,j] ≤B[i,j] for 
all j.
When a resource request is made by process i, this 
algorithm calls the Resource-Request algorithm to 
determine if the request can be granted.  The 
Resource-Request algorithm calls the Safety 
Algorithm to determine if a state is safe. 
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Safety Algorithm
1. Let Work[1..m] and Finish[1..n] be two working 

arrays.
2. Work := Available and Finish[i]=FALSE for all i
3. Find an i such that both

Finish[i] = FALSE      // process i is not yet done
Need[i,*] ≤ Work         // its need can be satisfied

If no such i exists, go to Step 5
4. Work = Work + Allocation[i,*] // run it and reclaim

Finish[i] = TRUE       // process i completes
go to Step 3

5. If Finish[i] = TRUE for all i, the system is in a 
safe state.
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Resource-Request Algorithm
1. Let Request[1..n,1..m] be the request matrix. Request[i,j]=k

means process i requests k units of resource j.
2. If Request[i,*]≤Need[i,*], go to Step 3.  Otherwise, it is an 

error.
3. If Request[i,*]≤Available, go to Step 4.  Otherwise, process i

waits.
4. Do the following:

Available = Available – Request[i,*]
Allocation[i,*] = Allocation[i,*]+Request[i,*]
Need[i,*] = Need[i,*] – Request[i,*]

If the result is a safe state (Safety Algorithm), the request is 
granted.  Otherwise, process i waits and the
resource-allocation tables are restored back to the original.
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Example: 1/4
Consider a system of 5 processes A, B, C, D and E, and 3 
resource types (X=10, Y=5, Z=7). At time t0, we have

A safe sequence is <B,D,E,C,A>.  Since B’s [1,2,2]≤ Avail’s 
[3,3,2], B runs.  Then, Avail=[2,0,0]+[3,3,2]=[5,3,2].    D runs 
next.  After this, Avail=[5,3,2]+[2,1,1]=[7,4,3].  E runs next. 
Avail=[7,4,3]+[0,0,2]=[7,4,5].  Since C’s [6,0,0]≤Avail=[7,4,5], C
runs.  After this, Avail=[7,4,5]+[3,0,2]=[10,4,7] and A runs.
There are other safe sequences: <D,E,B,A,C>, <D,B,A,E,C>, …

134334200E
110222112D
006209203C
221223002B

233347357010A
ZYXZYXZYXZYX

Allocation Max Need=Max-Alloc Available
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Example: 2/4
Now suppose process B asks for 1 X and 2 Zs.  More 
precisely, RequestB = [1,0,2].  Is the system still in a safe state 
if this request is granted?
Since RequestB = [1,0,2] ≤ Available = [3,3,2], this request 
may be granted as long as the system is safe.
If this request is actually granted, we have the following:

134334200E
110222112D
006209203C
020223203B

032347357010A
ZYXZYXZYXZYX

Allocation Max Need=Max-Alloc Available

[3,0,2]=[2,0,0]+[1,0,2] [0,2,0]=[1,2,2]-[1,0,2] [2,3,0]=[3,3,2]-[1,0,2]
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Example: 3/4

Is the system in a safe state after this allocation?
Yes, because the safety algorithm will provide a 
safe sequence <B,D,E,A,C>.  Verify it by 
yourself.
Therefore, B’s request of [1,0,2] can safely be 
made.

134334200E
110222112D
006209203C
020223203B

032347357010A
ZYXZYXZYXZYX

Allocation Max Need=Max-Alloc Available
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Example: 4/4

After this allocation, E’s request RequestE=[3,3,0] 
cannot be granted since RequestE=[3,3,0] ≤[2,3,0] is 
false.
A’s request RequestA=[0,2,0] cannot be granted because 
the system will be unsafe.
If RequestA=[0,2,0] is granted, Available=[2,1,0].
None of the five processes can finish and the system is 
unsafe.

134334200E
110222112D
006209203C
020223203B

032347357010A
ZYXZYXZYXZYX

Allocation Max Need=Max-Alloc Available
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Deadlock Detection
If a system does not use a deadlock prevention 
or a deadlock avoidance algorithm, then a 
deadlock situation may occur.  Thus, we need

An algorithm that can examine the system 
state to determine if a deadlock has 
occurred.  This is a deadlock detection
algorithm.
An algorithm that can help recover from a 
deadlock.  This is a recovery algorithm.

A deadlock detection algorithm does not have 
to know the maximum need Max and the 
current need Need.  It uses only Available, 
Allocation and Request.
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Deadlock Detection Algorithm
1. Let Work[1..m] and Finish[1..n] be two working arrays.
2. Work := Available and Finish[i]=FALSE for all i
3. Find an i such that both

Finish[i] = FALSE      // process i is not yet done
Request[i,*] ≤ Work    // its request can be satisfied

If no such i exists, go to Step 5
4. Work = Work + Allocation[i,*] // run it and reclaim

Finish[i] = TRUE       // process i completes
go to Step 3

5. If Finish[i] = TRUE for all i, the system is in a safe state.  If 
Finish[i] = FALSE, then process Pi is deadlocked.

Use Request here rather than Need in the safety algorithm
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Example: 1/2

Suppose maximum available resource is [7,2,6] and the 
current state of resource allocation is shown above.
Is the system deadlocked?  No.  We can run A first, making 
Available=[0,1,0].
Then, we run C, making Available=[3,1,3].  This is followed 
by D, making Available=[5,2,4], and followed by B and E.

200200E
001112D
000303C
202002B

000000010A
ZYXZYXZYX

Allocation Request Available
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Example: 2/2

Suppose C requests for one more resource Z.
Now, A can run, making Available=[0,1,0].
However, none of B, C, D and E can run.  
Therefore, B, C, D and E are deadlocked!

200200E
001112D
100303C
202002B

000000010A
ZYXZYXZYX

Allocation Request Available



26

The Use of a Detection Algorithm
Frequency

If deadlocks occur frequently, then the 
detection algorithm should be invoked 
frequently.
Once per hour or whenever CPU utilization 
becomes low (i.e., below 40%).  Low CPU 
utilization means more processes are 
waiting.
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How to Recover: 1/3
When a detection algorithm determines a 
deadlock has occurred, the algorithm may 
inform the system administrator to deal with it.  
Of, allow the system to recover from a deadlock.
There are two options.  

Process Termination
Resource Preemption

These two options are not mutually exclusive.



28

Recovery: Process Termination: 2/3

Abort all deadlocked processes
Abort one process at a time until the deadlock cycle 
is eliminated
Problems:

Aborting a process may not be easy.  What if a 
process is updating or printing a large file?  The 
system must find some way to maintain the state 
of the file and printer before they can be reused.
The termination may be determined by the 
priority/importance of a process.
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Recovery: Resource Preemption: 3/3

Selecting a victim: which resources and which 
processes are to be preempted?
Rollback:  If we preempt a resource from a 
process, what should be done with that process?

Total Rollback: abort the process and restart it
Partial Rollback:  rollback the process only as far as 
necessary to break the deadlock.

Starvation: We cannot always pick the same 
process as a victim.  Some limit must be set.


