
1

Semaphores

qA semaphore is an object that consists of a
counter, a waiting list of processes and two
methods (e.g., functions): signal and wait.

counter

waiting list

method signal

method wait

semaphore

2

Semaphore Method: wait

qAfter decreasing the counter by 1, if the counter
value becomes negative, then
vadd the caller to the waiting list, and then
vblock itself.

void wait(sem S)
{

S.count--;
if (S.count < 0) {

add the caller to the waiting list;
block();

}
}

3

Semaphore Method: signal

qAfter increasing the counter by 1, if the new
counter value is not positive, then
vremove a process P from the waiting list,
vresume the execution of process P, and return

void signal(sem S)
{

S.count++;
if (S.count <= 0) {

remove a process P from the waiting list;
resume(P);

}
}

4

Important Note: 1/4

qIf S.count < 0, abs(S.count) is the
number of waiting processes.

qThis is because processes are added to (resp.,
removed from) the waiting list only if the
counter value is < 0 (resp., <= 0).

S.count--; S.count++;
if (S.count<0) { if (S.count<=0) {

add to list; remove P;
block(); resume(P);

} }

5

Important Note: 2/4

qThe waiting list can be implemented with a
queue if FIFO order is desired.

qHowever, the correctness of a program should
not depend on a particular implementation of
the waiting list.

qYour program should not make any assumption
about the ordering of the waiting list.

S.count--; S.count++;
if (S.count<0) { if (S.count<=0) {

add to list; remove P;
block(); resume(P);

} }

6

Important Note: 3/4

qThe caller may be blocked in the call to wait().
qThe caller never blocks in the call to signal().

If S.count > 0, signal() returns and the
caller continues. Otherwise, a waiting process is
released and the caller continues. In this case, two
processes continue.

S.count--; S.count++;
if (S.count<0) { if (S.count<=0) {

add to list; remove P;
block(); resume(P);

} }

7

The Most Important Note: 4/4

qwait() and signal() must be executed
atomically (i.e., as one uninterruptible unit).

qOtherwise, race conditions may occur.
qHomework: use execution sequences to show

race conditions if wait() and/or signal() is
not executed atomically.

S.count--; S.count++;
if (S.count<0) { if (S.count<=0) {

add to list; remove P;
block(); resume(P);

} }

8

Three Typical Uses of Semaphores

qThere are three typical uses of semaphores:
vmutual exclusion:

Mutex (i.e., Mutual Exclusion) locks
vcount-down lock:

Keep in mind that semaphores have a counter.
vnotification:

Indicate an event has occurred.

9

Use 1: Mutual Exclusion (Lock)
semaphore S = 1;
int count = 0;

while (1) { while (1) {
// do something // do something
S.wait(); S.wait();

count++; count--;
S.signal(); S.signal();
// do something // do something

} }

entry

exit

initialization is important

critical sections

qWhat if the initial value of S is zero?
qS is a binary semaphore (similar to a lock).

Process 1 Process 2

10

Use 2: Count-Down Counter

qAfter three processes pass through wait(), this
section is locked until a process calls signal().

semaphore S = 3;

while (1) { while (1) {
// do something // do something
S.wait(); S.wait();

S.signal(); S.signal();
// do something // do something

} }

at most 3 processes can be here!!!

Process 1 Process 2

11

Use 3: Notification

qProcess 1 uses S2.signal() to notify process
2, indicating “I am done. Please go ahead.”

qThe output is 1 2 1 2 1 2 ……
qWhat if both S1 and S2 are both 0’s or both 1’s?
qWhat if S1 = 0 and S2 = 1?

semaphore S1 = 1, S2 = 0;

while (1) { while (1) {
// do something // do something
S1.wait(); S2.wait();

cout << “1”; cout << “2”;
S2.signal(); S1.signal();
// do something // do something

} }

process 1 process 2

notify

notify

12

Lock Example: Dining
Philosophers

§ Five philosophers are in a
thinking - eating cycle.

§ When a philosopher gets
hungry, he sits down, picks
up two nearest chopsticks,
and eats.

§ A philosopher can eat only
if he has both chopsticks.

§ After eating, he puts down
both chopsticks and thinks.

§ This cycle continues.

13

Dining Philosopher: Ideas
qChopsticks are shared

items (by two philosophers)
and must be protected.

qEach chopstick has a
semaphore with initial
value 1.

qA philosopher calls
wait() before picks up a
chopstick and calls
signal() to release it.

Semaphore C[5] = 1;

C[i].wait();
C[(i+1)%5].wait();

C[(i+1)%5].signal();
C[i].signal();

has 2 chops and eats

inner critical section

outer critical section
left chop locked

right chop locked

14

Dining Philosophers: Code

semaphore C[5] = 1;

while (1) {
// thinking
C[i].wait();
C[(i+1)%5].wait();
// eating
C[(i+1)%5].signal();
C[i].signal();
// finishes eating

}

philosopher i wait for my left chop

wait for my right chop

release my right chop

release my left chop

Does this solution work?

15

Dining Philosophers: Deadlock!

§ If all five philosophers
sit down and pick up
their left chopsticks at
the same time, this
program has a circular
waiting and deadlocks.

§ An easy way to remove
this deadlock is to
introduce a weirdo who
picks up his right
chopstick first!

16

Dining Philosophers: A Better Idea
semaphore C[5] = 1;

while (1) { while (1) {
// thinking // thinking
C[i].wait(); C[(i+1)%5].wait();
C[(i+1)%5].wait(); C[i].wait();
// eating // eating
C[(i+1)%5].signal(); C[i].signal();
C[i].signal(); C[(i+1)%5].signal();
// finishes eating; // finishes eating

} }

philosopher i (0, 1, 2, 3) Philosopher 4: the weirdo

lock right choplock left chop

17

Dining Philosophers: Questions

qThe following are some important questions for
you to work on.
vWe choose philosopher 4 to be the weirdo.

Does this choice matter?
vShow that this solution does not cause circular

waiting.
vShow that this solution will not have circular

waiting if we have more than 1 and less than 5
weirdoes.

qThese questions may appear as exam problems.

18

Count-Down Lock Example

qThe naïve solution to the
dining philosophers causes
circular waiting.

qIf only four philosophers are
allowed to sit down, no
deadlock can occur.

qWhy? If all four of them sit
down at the same time, the
right-most philosopher can
have both chopsticks!

qHow about fewer than four?
This is obvious.

19

Count-Down Lock Example
semaphore C[5]= 1;
semaphore Chair = 4;

while (1) {
// thinking
Chair.wait();

C[i].wait();
C[(i+1)%5].wait();
// eating
C[(i+1)%5].signal();
C[i].signal();

Chair.signal();
}

this is a count-down lock
that only allows 4 to go!

this is our old friend

get a chair

release my chair

20

The Producer/Consumer Problem

qSuppose we have a
circular buffer of n slots.

qPointers in (resp., out)
points to the first empty
(resp., filled) slot.

qProducer processes keep
adding info into the
buffer

qConsumer processes keep
retrieving info from the
buffer.

bounded-buffer

21

Problem Analysis
qA producer deposits info into
Buf[in] and a consumer
retrieves info from Buf[out].

qin and out must be advanced.
qin is shared among producers.
qout is shared among consumers.
qIf Buf is full, producers should

be blocked.
qIf Buf is empty, consumers

should be blocked.

buffer is implemented
with an array Buf[]

22

qWe need a sem.
to protect the
buffer.

qA second sem.
to block
producers if the
buffer is full.

qA third sem. to
block
consumers if
the buffer is
empty.

23

semaphore NotFull=n, NotEmpty=0, Mutex=1;

while (1) { while (1) {
NotFull.wait(); NotEmpty.wait();

Mutex.wait(); Mutex.wait();
Buf[in] = x; x = Buf[out];
in = (in+1)%n; out = (out+1)%n;

Mutex.signal(); Mutex.signal();
NotEmpty.signal(); NotFull.signal();

} }notifications

producer consumer

critical section

Solution
no. of slots

24

Question

qWhat if the producer code is modified as follows?
qAnswer: a deadlock may occur. Why?

while (1) {
Mutex.wait();
NotFull.wait();
Buf[in] = x;
in = (in+1)%n;

NotEmpty.signal();
Mutex.signal();

}

order changed

25

The Readers/Writers Problem

qTwo groups of processes, readers and writers,
are accessing a shared resource by the following
rules:
vReaders can read simultaneously.
vOnly one writer can write at any time.
vWhen a writer is writing, no reader can read.
vIf there is any reader reading, all incoming

writers must wait. Thus, readers have higher
priority.

26

Problem Analysis

qWe need a semaphore to block readers if a
writer is writing.

qWhen a writer arrives, it must be able to know
if there are readers reading. So, a reader count
is required which must be protected by a lock.

qThis reader-priority version has a problem:
bounded waiting condition may be violated if
readers keep coming, causing the waiting
writers no chance to write.

27

qWhen a reader comes
in, it increase the
count.

qIf it is the 1st reader,
waits until no writer is
writing,

qReads data.
qDecreases the counter.
qNotifies the writer

that no reader is
reading if it is the last.

28

qWhen a writer
comes in, it waits
until no reader is
reading and no
writer is writing.

qThen, it writes data.
qFinally, notifies

readers and writers
that no writer is in.

29

Solution
semaphore Mutex = 1, WrtMutex = 1;
int RdrCount;

while (1) { while (1) {
Mutex.wait();
RdrCount++;
if (RdrCount == 1)
WrtMutex.wait(); WrtMutex.wait();

Mutex.signal();
// read data // write data
Mutex.wait();
RdrCount--;
if (RdrCount == 0)
WrtMutex.signal(); WrtMutex.signal();

Mutex.signal();
} }

blocks both readers and writers

reader writer

