Semaphores

A semaphoreisan object that consistsof a

counter, awaiting list of processes and two
methods (e.g., functions): si gnal and wai t .

| semaphore
method si gnal

| counter |

method wali t

| waiting list

Semaphore Method: walit

void wait(sem S)

{
S. count - -;
1 f (S.count < 0) {
add the caller to the waiting list;
bl ock();
}
}

J After decreasing the counter by 1, if the counter
value becomes negative, then

“+add the caller tothewaiting list, and then
“*block itself.

Semaphore Method: signal

voi d signal (sem S)

{
S. count ++;
1 f (S.count <= 0) {
remove a process P from the waiting list;
resunme(P);
}
}

After increasing the counter by 1, if the new
counter valueisnot positive, then

“*remove a process P from the waiting list,
“*resume the execution of process P, and return

Important Note: 1/4

S.count - -; S. count ++;

1 f (S.count<0) { 1 f (S.count<=0) {
add to list; renove P;
bl ock(); resune(P);

} }

dIf S. count < 0,abs(S. count) isthe
number of waiting processes.

dThisisbecause processes are added to (resp.,

removed from) the waiting list only if the
counter valueis< 0O (resp., <= 0).

Important Note: 2/4

S. count - -; S. count ++;

1 f (S.count<0) { 1 f (S.count<=0) {
add to list; renove P;
bl ock() ; resune(P);

} }

dThewaiting list can be implemented with a
gueueif FIFO order isdesired.

JHowever, the correctness of a program should
not depend on a particular implementation of
the waiting list.

dYour program should not make any assumption
about the ordering of the waiting list.

Important Note: 3/4

S. count --; S. count ++;
1 f (S. count<0) { 1 f (S.count<=0) {
add to list; renove P;
bl ock(); resune(P);
} }
dThe caller may beblocked inthecall towai t ().

dThecaller never blocksin thecall tosi gnal ().
If S. count > 0O,signal () returnsand the

caller continues. Otherwise, a waiting processis
released and the caller continues. In thiscase, two
Pr ocesses continue.

6

The Most Important Note: 4/4

S.count - -; S. count ++;

1 f (S.count<0) { 1 f (S.count<=0) {
add to list; renove P;
bl ock(); resunme(P);

} }

dwai t () and si gnal () must be executed
atomically (i.e., asone uninterruptible unit).

JOtherwise, race conditions may occur.

JHomework: use execution sequencesto show
race conditionsif wai t () and/or si gnal () Is

not executed atomically.

7

Three Typical Uses of Semaphores

dTherearethreetypical uses of semaphores:
“*mutual exclusion:
Mutex (i.e., Mutual Exclusion) locks
“»*count-down lock:
Keep In mind that semaphor es have a counter.
“*notification:
|ndicate an event has occurred.

Use 1: Mutual Exclusion (Lock)

Initialization Is important

semaphore
| nt count = O;
Process 1 Process 2
while (1) { while (1) {
/| do sonething entry [/ do sonething
| S wait(); S.wait(): |
QU erTical SeCtionS. T CoUNt -
| S. signal (); S.signal (); |
[/ do sonething gt [/ do sonet hi ng
} }

AdWhat if theinitial value of Sis zero?

dSisabinary semaphore (smilar to a lock). :

Use 2: Count-Down Counter

semaphore S = 3

S
Process1l Process 2
while (1) { ¥ while (1) {
/1 do somgt hing /1 do somet hing
S.wait();? S.wai t();
rovene | at nyost 3 processes can be here!!! |
: S.signali(); S.signal ();
/1 do sonet hing /1 do sonet hing
J H }

EEIAfter three processes passthrough vval L(),this

%e
] ,‘

Use 3: Notification
semaphore S1 =1, S2 = O;

process 1 process 2
while (1) { while (1) {
// _do_sonet hi ng /1 do sonet hi ng
|S1. wai t () ; feotify SZwait () |
cout << “1" cout << “27;
|S2. si gnal () ; |notify Si.signal (); |
/] do sonet hi ng /1 do sonet hi ng
} }

dProcess1usesS2. si gnal () tonotify process
2, Indicating “| am done. Please go ahead.”

dTheoutputisl 2 1 2 1 2 ...
JdWhat if both S1 and S2 areboth O’sor both 1's?
dWhat if S1 =0and S2 =17 11

Lock Example: Dining

Philosophers
Five philosophersarein a
thinking - eating cycle.
When a philosopher gets
hungry, he sitsdown, picks
up two nearest chopsticks,
and eats.

A philosopher can eat only
If he has both chopsticks.

After eating, he putsdown
both chopsticks and thinks.

Thiscycle continues.

12

Dining Philosopher: Ideas

A Chopsticks are shared outer critical section
left chop locked |

items (by two philosophers)
and must be protected.
J Each chopstick hasa

semaphore with initial
value 1.

A philosopher calls) _
wai t () beforepicksup a ||l +1) Y] S gnal ()|
chopstick and calls di].signal(); §

signal () toreleaseit. \
Inner critical section

right chop locked 13

‘ has 2 chops and eats ‘

Dining Philosophers: Code
semaphore (5] = 1,

philosopher | wait for my left chop

while (1) {
[/ thinking | |
Cli].wait(wait for my right chop

C(1+1)%].wait(*

/| eating release my right chop
C(1+1)%].signal (;

Ci].signal (); release my left chop
/[l finishes eating

Does this solution WOI‘k?4

Dining Philosophers: Deadlock!

= |f all five philosophers
sit down and pick up
their left chopsticks at
the sametime, this
program hasa circular
waiting and deadlocks.

= An easy way toremove
thisdeadlock isto
Introduce a weirdo who
picksup hisright
chopstick first!

15

Dining Philosophers: A Better Idea
semaphore (5] = 1;
philosopher i (0, 1, 2, 3)
while (1) {

Philosopher 4. theweirdo
while (1) {

/] eating

e RSN

[l finishes eqting, /| fimnishes eating

lock |eft chop lock right chop

16

Dining Philosophers: Questions

dThefollowing are some important questions for
you to work on.

“*We choose philosopher 4 to bethe weirdo.
Doesthis choice matter?

++*Show that this solution does not cause circular
waiting.
+*Show that this solution will not have circular

waiting If we have morethan 1 and lessthan 5
weir does.

JThese questions may appear as exam problems.

17

Count-Down Lock Example

1 The naive solution to the
dining philosophers causes
circular waiting.

If only four philosophersare
allowed to sit down, no
deadlock can occur.

dWhy? |f all four of them sit
down at the sametime, the
right-most philosopher can
have both chopsticks!

JHow about fewer than four?
Thisisobvious.

18

Count-Down Lock Example

semaphore ([5] = 1;....
semaphore Chair :i.4;:-

get a chair \

while (1) thisis a count-down lock
/| thifki ng that only allows 4 to go!
Chai r. wai t ()] /
Cli].wait();
C(i+1)%].wait();
/1 eating «— thisisour old friend
Cl (i1 +1)%].signal ();
d1].signal();

Chai r. signal ()}
} T—~—rdease my chair

19

The Producer/Consumer Problem

d Suppose we have a
circular buffer of n dots.

dPointersin (resp., out)

l I pointsto thefirst empty
(resp., filled) dlot.
‘ , JProducer processes keep
Qo out

in

adding info into the
buffer

d Consumer processes keep
bounded-buffer retrieving info from the
buffer.

20

Problem Analysis

in JA producer depositsinfo into
Buf [1 n] and aconsumer

retrievesinfo from Buf | out | .
U i n and out must be advanced.
e ot A1 N 1SsShared among producers.
dout isshared among consumers.
d1f Buf i1sfull, producersshould

buffer isimplemented D€ blocked.
withanarray Buf [| Q|f Buf isempty, consumers
should be blocked.

21

producer consumer

it buffe
notempty J1Weneed a sem.

to protect the

wait buffer
not full

1 buffer.
locknbuff lock buffe
o xfr ERBMIET A second sem.
X / to block
\ [/ producersif the
\ .
% buffer isfull.
e A third sem. to
unlock i}}{’FEe.- \ unlock buffer bIOCk
Fi .
/ consumersif
r .
bhufer is Eiui'i-;—“.r“uc the bUffer IS
dt em phy not fi
i'j!.{ 2iMmg 1 | empty_

22

Solution

no. of dots
semphormgi; Not Enpt y=0, Mut ex=1;
producer consumer
while (1) { ST ki e (1)
Not Ful | . wai t () Not Enpty. wai t () ;
Mot ex. wai t () . Mitex. wai t () ;
Buf[in] = x; i x = Buf[out];
in = (in+l) %, i out = (out+1)%;
Mut ex. si gnalx(); SMutex. signal ()
Not Enpty. si gnal(); ot Ful I'Ngi gnal () ;
} ---------- \g

notification

critical section
23

Question

dWhat if the producer code is modified as follows?
JAnswer: adeadlock may occur. Why?

while (1) {
Mutex. wal t () ;
Not Ful I . wait();

Buf [In] = X;
order changed in = (in+l) %

\ Not Enpty. si gnal () ;
}

Mut ex. si gnal () ;

24

The Readers/Writers Problem

1 Two groups of processes, readersand writers,
are accessing a shared resour ce by the following
rules:

“*Readers can read simultaneoudly.
“*Only onewriter can write at any time.
“*When awriter iswriting, no reader can read.

“*If thereisany reader reading, all incoming
writers must wait. Thus, readers have higher
priority.

25

Problem Analysis

dWe need a semaphoreto block readersif a
writer iswriting.
dWhen awriter arrives, it must be ableto know

If therearereadersreading. So, areader count
ISrequired which must be protected by a lock.

dThisreader-priority version has a problem:
bounded waiting condition may be violated if
reader s keep coming, causing the waiting
writersno chancetowrite.

26

----—% Reader

increase
reader ent

'

am [the 1st?

Writer

reduce
reader cnt

:

am I the
last?

JWhen areader comes
IN, It INCreasethe
count.

dIf it isthe 1 reader,
wailts until nowriter Is
writing,

] Reads data.

L Decreasesthe counter.

L Notifiesthewriter
that noreader Is
reading if it isthelast.

27

----—% Reader

increase

| reader cnt . DWhen awriter
I Writer .. :
I ‘# comesin, It waits

am I the Ist? until noreader is
reading and no
writer iswriting.

read data \

\ dThen, it writes data.
;~~-~* QFinally, notifies
reduce f; readersand writers
| * that no writer isin.
| [am1the /
i last? /

X I
!
HH‘ é _______ |
N
b
28

Solution

semaphore Mutex = 1, WtMitex = 1,
| nt Rdr Count ;

reader writer
while (1) { while (1) {
Mut ex.wal t();
Rdr Count ++;
i f (Rdr Count == 1) |blocks both readersand writers
|WitMitex. walt(); WithMitex.walrt(),; |
Mut ex. si gnal () ;
/'l read data /Il wite data
Mut ex.wal t();
Rdr Count - - ;
| f (Rdr Count == 0)
Wt Mut ex. si gnal () ; Wt Mut ex. si gnal () ;
Mut ex. si gnal () ;

29

