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Part II
Process Management
Chapter 6:  Process Synchronization
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Process Synchronization

Why is synchronization needed?
Race Conditions
Critical Sections
Pure Software Solutions
Hardware Support
Semaphores
Monitors
Message Passing
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Why is Synchronization Needed? 1/4

int  Count = 10;

Process 1       Process 2

Count++; Count--;

Count = ?  9, 10 or 11?
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Why is Synchronization Needed? 2/4

int  Count = 10;

Process 1                                Process 2

LOAD  Reg, Count    LOAD  Reg, Count
ADD   #1            SUB   #1
STORE Reg, Count    STORE Reg, Count

The problem is that the execution flow may be 
switched in the middle!
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Why is Synchronization Needed? 3/4

99STORE

1111STORE

1011ADD

109SUB

1010LOAD

1010LOAD

Inst          Reg      Memory       Inst           Reg       Memory
Process 1                                Process 2

erases the previous value 11
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Why is Synchronization Needed? 4/4

1111STORE

99STORE

109SUB

1010LOAD

1011ADD

1010LOAD

Inst          Reg      Memory       Inst           Reg       Memory
Process 1                                Process 2

erases the previous value 9
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Race Conditions

A Race Condition occurs, if
two or more processes/threads access and 
manipulate the same data concurrently, and
the outcome of the execution depends on the 
particular order in which the access takes 
place.

Synchronization is needed to prevent race 
conditions from happening.
Synchronization is a difficult topic.  Don’t miss 
a class; otherwise, you will miss a lot of things.
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Critical Section and Mutual Exclusion
A critical section is a section of code in which a 
process accesses shared resources.
Thus, the execution of critical sections must be 
mutually exclusive (e.g., at most one process can 
be in its critical section at any time).
The critical-section problem is to design a 
protocol that processes can use to cooperate.

int  count; // shared

count++;        count--;       cout << count;

critical sections
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The Critical Section Protocol

A critical section protocol
consists of two parts: an 
entry section and an exit 
section.
Between them is the 
critical section that must 
run in a mutually 
exclusive way.

do {

} while (1);

entry section

exit section

critical section
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Solutions to the Critical Section Problem

Any solution to the critical section problem 
must satisfy the following three conditions:

Mutual Exclusion
Progress
Bounded Waiting

Moreover, the solution cannot depend on 
CPU’s relative speed and scheduling policy.
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Mutual Exclusion
If a process P is executing in its critical section, 
then no other processes can be executing in their 
critical sections.
The entry protocol should be capable of 
blocking processes that wish to enter but cannot.
Moreover, when the process that is executing in 
its critical section exits, the entry protocol must 
be able to know this fact and allows a waiting 
process to enter.
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Progress

If no process is executing in its critical section 
and some processes wish to enter their critical 
sections, then

Only those processes that are waiting to enter 
can participate in the competition (to enter 
their critical sections).
No other process can influence this decision.
This decision cannot be postponed indefinitely.
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Bounded Waiting

After a process made a request to enter its 
critical section and before it is granted the 
permission to enter, there exists a bound on the 
number of times that other processes are 
allowed to enter.
Hence, even though a process may be blocked 
by other waiting processes, it will not be waiting 
forever.
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Software Solutions for
Two Processes

Suppose we have two processes, P0 and P1.
Let one process be Pi and the other be Pj, where 
j = 1- i.  Thus, if i = 0 (resp., i = 1), then j = 1 
(resp., j = 0).
We want to design the enter-exit protocol for a 
critical section so that mutual exclusion is 
guaranteed.
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Algorithm I: 1/2
Global variable 
turn controls who 
can enter the 
critical section.
Since turn is either 
0 or 1, only one can 
enter.
However, processes 
are forced to run in 
an alternating way.

do {

while (turn != i);

turn = j;

} while (1);

critical section

enter

exit

if it is not my turn, I wait

I am done, it is your turn now

process Pi
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Algorithm I: 2/2
This solution does 
not fulfill the 
progress condition.
If Pj exits by setting 
turn to i and 
terminates, Pi can 
enter but cannot 
enter again.
Thus, an irrelevant 
process can block 
other processes 
from entering a 
critical section.

do {

while (turn != i);

turn = j;

} while (1);

critical section

enter

exit

if it is not my turn, I wait

I am done, it is your turn now

process Pi
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Algorithm II: 1/2
Variable flag[i]
is the “state” of 
process Pi: 
interested or not-
interested.
Pi expresses its 
intention to enter, 
waits for Pj to exit, 
enters its section, 
and finally changes 
to “I am out” upon 
exit.

bool  flag[2];

do {

flag[i] = TRUE;
while (flag[j]);

flag[i] = FALSE;

}

critical section

enter

exit

I am interested

wait for you

I am not interested
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Algorithm II: 2/2
The correctness of this 
algorithm is timing 
dependent!
If both processes set 
flag[i] and 
flag[j] to TRUE at 
the same time, then 
both will be looping at 
the while forever 
and no one can enter.
Bounded waiting does 
not hold.

bool  flag[2];

do {

flag[i] = TRUE;
while (flag[j]);

flag[i] = FALSE;

}

critical section

enter

exit

I am interested

wait for you

I am not interested
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Algorithm III: a Combination 1/4

bool flag[2];
int  turn; 

do {

flag[i] = TRUE;
turn = j;
while (flag[j] && turn == j);

flag[i] = FALSE;

}

critical section

enter

exit

I am interested
yield to you first

wait while you are
interested and it is
your turn.

I am done

// process Pi
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Algorithm III: Mutual Exclusion 2/4

If both processes are in their critical sections, then 
flag[j] && turn == j (Pi) and flag[i] && turn 
== i (Pj) are both FALSE.
flag[i] and flag[j] are both TRUE 
Thus, turn == i and turn == j are FALSE.
Since turn can hold one value, only one of turn == i 
or turn == j is FALSE, but not both.
We have a contradiction and Pi and Pj cannot be in their 
critical sections at the same time.

flag[i] = TRUE; 
turn = j;
while (flag[j] && turn == j);

process Pi
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Algorithm III: Progress 3/4

If Pi is waiting to enter, it must be executing its 
while loop.
Suppose Pj  is not in its critical section:

If Pj is not interested in entering, flag[j] was 
set to FALSE when Pj exits.  Thus, Pi may enter.
If Pj wishes to enter and sets flag[j] to TRUE,  
it will set turn to i and Pi may enter.

In both cases, processes that are not waiting do not 
block the waiting processes from entering. 

flag[i] = TRUE; 
turn = j;
while (flag[j] && turn == j);

process Pi
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Algorithm III: Bounded Waiting 4/4

When Pi wishes to enter:
If Pj is outside of its critical section, then flag[j] is 
FALSE and Pi may enter.
If Pj is in its critical section, eventually it will set 
flag[j] to FALSE and Pi may enter.
If Pj is in the entry section, Pi may enter if it reaches 
while first.  Otherwise, Pj enters and Pi may enter 
after Pj sets flag[j] to FALSE and exits.

Thus, Pi waits at most one round!

flag[i] = TRUE; 
turn = j;
while (flag[j] && turn == j);

process Pi
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Hardware Support

There are two types of hardware 
synchronization supports:

Disabling/Enabling interrupts:  This is slow 
and difficult to implement on multiprocessor 
systems.
Special privileged machine instructions:

Test and set (TS)
Swap
Compare and Swap (CS)
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Interrupt Disabling
Because interrupts are 
disabled, no context 
switch will occur in a 
critical section.
Infeasible in a 
multiprocessor system 
because all CPUs must 
be informed.
Some features that 
depend on interrupts 
(e.g., clock) may not 
work properly. 

do {

} while (1);

disable interrupts

enable interrupts

critical section

entry

exit
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Special Machine Instructions
Atomic: These instructions execute as one 
uninterruptible unit.  More precisely, when such 
an instruction runs, all other instructions being 
executed in various stages by the CPUs will be 
stopped (and perhaps re-issued later) until this 
instruction finishes.
Thus, if two such instructions are issued at the 
same time, even though on different CPUs, they 
will be executed sequentially.
Privileged: These instructions are, in general, 
privileged, meaning they can only execute in 
supervisor or kernel mode. 
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The Test-and-Set Instruction

Mutual exclusion is 
obvious as only one TS
instruction can run at a 
time.
However, progress and 
bounded waiting may 
not be satisfied.

bool TS(bool *key)
{

bool save = *key;
*key = TRUE;
return save;

}

do {

while (TS(&lock));

lock = FALSE;

} while (1);

critical section

bool  lock = FALSE;

entry

exit
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Problems with Software and 
Hardware Solutions

All of these solutions use busy waiting.
Busy waiting means a process waits by executing a tight 
loop to  check the status/value of a variable.
Busy waiting may be needed on a multiprocessor system; 
however, it wastes  CPU cycles that some other processes 
may use productively.
Even though some personal/lower-end systems may allow 
users to use some atomic instructions, unless the system 
is lightly loaded, CPU and system performance can be 
low, although a programmer may “think” his/her 
program looks more efficient.
So, we need a better solution.


