
1

Part II
Process Management
Chapter 6: Process Synchronization

2

Process Synchronization

Why is synchronization needed?
Race Conditions
Critical Sections
Pure Software Solutions
Hardware Support
Semaphores
Monitors
Message Passing

3

Why is Synchronization Needed? 1/4

int Count = 10;

Process 1 Process 2

Count++; Count--;

Count = ? 9, 10 or 11?

4

Why is Synchronization Needed? 2/4

int Count = 10;

Process 1 Process 2

LOAD Reg, Count LOAD Reg, Count
ADD #1 SUB #1
STORE Reg, Count STORE Reg, Count

The problem is that the execution flow may be
switched in the middle!

5

Why is Synchronization Needed? 3/4

99STORE

1111STORE

1011ADD

109SUB

1010LOAD

1010LOAD

Inst Reg Memory Inst Reg Memory
Process 1 Process 2

erases the previous value 11

6

Why is Synchronization Needed? 4/4

1111STORE

99STORE

109SUB

1010LOAD

1011ADD

1010LOAD

Inst Reg Memory Inst Reg Memory
Process 1 Process 2

erases the previous value 9

7

Race Conditions

A Race Condition occurs, if
two or more processes/threads access and
manipulate the same data concurrently, and
the outcome of the execution depends on the
particular order in which the access takes
place.

Synchronization is needed to prevent race
conditions from happening.
Synchronization is a difficult topic. Don’t miss
a class; otherwise, you will miss a lot of things.

8

Critical Section and Mutual Exclusion
A critical section is a section of code in which a
process accesses shared resources.
Thus, the execution of critical sections must be
mutually exclusive (e.g., at most one process can
be in its critical section at any time).
The critical-section problem is to design a
protocol that processes can use to cooperate.

int count; // shared

count++; count--; cout << count;

critical sections

9

The Critical Section Protocol

A critical section protocol
consists of two parts: an
entry section and an exit
section.
Between them is the
critical section that must
run in a mutually
exclusive way.

do {

} while (1);

entry section

exit section

critical section

10

Solutions to the Critical Section Problem

Any solution to the critical section problem
must satisfy the following three conditions:

Mutual Exclusion
Progress
Bounded Waiting

Moreover, the solution cannot depend on
CPU’s relative speed and scheduling policy.

11

Mutual Exclusion
If a process P is executing in its critical section,
then no other processes can be executing in their
critical sections.
The entry protocol should be capable of
blocking processes that wish to enter but cannot.
Moreover, when the process that is executing in
its critical section exits, the entry protocol must
be able to know this fact and allows a waiting
process to enter.

12

Progress

If no process is executing in its critical section
and some processes wish to enter their critical
sections, then

Only those processes that are waiting to enter
can participate in the competition (to enter
their critical sections).
No other process can influence this decision.
This decision cannot be postponed indefinitely.

13

Bounded Waiting

After a process made a request to enter its
critical section and before it is granted the
permission to enter, there exists a bound on the
number of times that other processes are
allowed to enter.
Hence, even though a process may be blocked
by other waiting processes, it will not be waiting
forever.

14

Software Solutions for
Two Processes

Suppose we have two processes, P0 and P1.
Let one process be Pi and the other be Pj, where
j = 1- i. Thus, if i = 0 (resp., i = 1), then j = 1
(resp., j = 0).
We want to design the enter-exit protocol for a
critical section so that mutual exclusion is
guaranteed.

15

Algorithm I: 1/2
Global variable
turn controls who
can enter the
critical section.
Since turn is either
0 or 1, only one can
enter.
However, processes
are forced to run in
an alternating way.

do {

while (turn != i);

turn = j;

} while (1);

critical section

enter

exit

if it is not my turn, I wait

I am done, it is your turn now

process Pi

16

Algorithm I: 2/2
This solution does
not fulfill the
progress condition.
If Pj exits by setting
turn to i and
terminates, Pi can
enter but cannot
enter again.
Thus, an irrelevant
process can block
other processes
from entering a
critical section.

do {

while (turn != i);

turn = j;

} while (1);

critical section

enter

exit

if it is not my turn, I wait

I am done, it is your turn now

process Pi

17

Algorithm II: 1/2
Variable flag[i]
is the “state” of
process Pi:
interested or not-
interested.
Pi expresses its
intention to enter,
waits for Pj to exit,
enters its section,
and finally changes
to “I am out” upon
exit.

bool flag[2];

do {

flag[i] = TRUE;
while (flag[j]);

flag[i] = FALSE;

}

critical section

enter

exit

I am interested

wait for you

I am not interested

18

Algorithm II: 2/2
The correctness of this
algorithm is timing
dependent!
If both processes set
flag[i] and
flag[j] to TRUE at
the same time, then
both will be looping at
the while forever
and no one can enter.
Bounded waiting does
not hold.

bool flag[2];

do {

flag[i] = TRUE;
while (flag[j]);

flag[i] = FALSE;

}

critical section

enter

exit

I am interested

wait for you

I am not interested

19

Algorithm III: a Combination 1/4

bool flag[2];
int turn;

do {

flag[i] = TRUE;
turn = j;
while (flag[j] && turn == j);

flag[i] = FALSE;

}

critical section

enter

exit

I am interested
yield to you first

wait while you are
interested and it is
your turn.

I am done

// process Pi

20

Algorithm III: Mutual Exclusion 2/4

If both processes are in their critical sections, then
flag[j] && turn == j (Pi) and flag[i] && turn
== i (Pj) are both FALSE.
flag[i] and flag[j] are both TRUE
Thus, turn == i and turn == j are FALSE.
Since turn can hold one value, only one of turn == i
or turn == j is FALSE, but not both.
We have a contradiction and Pi and Pj cannot be in their
critical sections at the same time.

flag[i] = TRUE;
turn = j;
while (flag[j] && turn == j);

process Pi

21

Algorithm III: Progress 3/4

If Pi is waiting to enter, it must be executing its
while loop.
Suppose Pj is not in its critical section:

If Pj is not interested in entering, flag[j] was
set to FALSE when Pj exits. Thus, Pi may enter.
If Pj wishes to enter and sets flag[j] to TRUE,
it will set turn to i and Pi may enter.

In both cases, processes that are not waiting do not
block the waiting processes from entering.

flag[i] = TRUE;
turn = j;
while (flag[j] && turn == j);

process Pi

22

Algorithm III: Bounded Waiting 4/4

When Pi wishes to enter:
If Pj is outside of its critical section, then flag[j] is
FALSE and Pi may enter.
If Pj is in its critical section, eventually it will set
flag[j] to FALSE and Pi may enter.
If Pj is in the entry section, Pi may enter if it reaches
while first. Otherwise, Pj enters and Pi may enter
after Pj sets flag[j] to FALSE and exits.

Thus, Pi waits at most one round!

flag[i] = TRUE;
turn = j;
while (flag[j] && turn == j);

process Pi

23

Hardware Support

There are two types of hardware
synchronization supports:

Disabling/Enabling interrupts: This is slow
and difficult to implement on multiprocessor
systems.
Special privileged machine instructions:

Test and set (TS)
Swap
Compare and Swap (CS)

24

Interrupt Disabling
Because interrupts are
disabled, no context
switch will occur in a
critical section.
Infeasible in a
multiprocessor system
because all CPUs must
be informed.
Some features that
depend on interrupts
(e.g., clock) may not
work properly.

do {

} while (1);

disable interrupts

enable interrupts

critical section

entry

exit

25

Special Machine Instructions
Atomic: These instructions execute as one
uninterruptible unit. More precisely, when such
an instruction runs, all other instructions being
executed in various stages by the CPUs will be
stopped (and perhaps re-issued later) until this
instruction finishes.
Thus, if two such instructions are issued at the
same time, even though on different CPUs, they
will be executed sequentially.
Privileged: These instructions are, in general,
privileged, meaning they can only execute in
supervisor or kernel mode.

26

The Test-and-Set Instruction

Mutual exclusion is
obvious as only one TS
instruction can run at a
time.
However, progress and
bounded waiting may
not be satisfied.

bool TS(bool *key)
{

bool save = *key;
*key = TRUE;
return save;

}

do {

while (TS(&lock));

lock = FALSE;

} while (1);

critical section

bool lock = FALSE;

entry

exit

27

Problems with Software and
Hardware Solutions

All of these solutions use busy waiting.
Busy waiting means a process waits by executing a tight
loop to check the status/value of a variable.
Busy waiting may be needed on a multiprocessor system;
however, it wastes CPU cycles that some other processes
may use productively.
Even though some personal/lower-end systems may allow
users to use some atomic instructions, unless the system
is lightly loaded, CPU and system performance can be
low, although a programmer may “think” his/her
program looks more efficient.
So, we need a better solution.

