Part | |

Process M anagement

Chapter 6. Process Synchronization

Process Synchronization

Why is synchronization needed?
Race Conditions

Critical Sections

Pur e Softwar e Solutions
Hardwar e Support

Semaphores

Monitors

M essage Passing

Why is Synchronization Needed? 1/4

int Count = 10;

Process 1 Process 2

Count++; Count--;

Count =7 9, 100r 117

Why is Synchronization Needed? 2/4

int Count = 10;

Process 1 Process 2

LOAD Reg, Count LOAD Reg, Count
ADD #1 SUB #1

STORE Reg, Count STORE Reg, Count

The problem isthat the execution flow may be
switched in the middle!

Why is Synchronization Needed? 3/4

Process 1 Process 2
| nst Reg Memory | nst Reg Memory

LOAD 10 10

LOAD 10 10
SUB 9 10
ADD 11 10
STORE 11 11 erasesthe previousvalue 11

IIIII

STORE 9 % 9 :

Why is Synchronization Needed? 4/4

Process 1 Process 2
| nst Reg Memory | nst Reg Memory

LOAD 10 10

ADD 11 10

el N
LY .;

2 previous value 9

STORE 11 | 5 11;

Race Conditions

J A Race Condition occurs, If

“*two or mor e processes/thr eads access and
manipulate the same data concurrently, and

“*the outcome of the execution dependson the
particular order in which the accesstakes
place.

 Synchronization is needed to prevent race
conditions from happening.

L Synchronization isa difficult topic. Don’t miss
a class; otherwise, you will missalot of things.

Critical Section and Mutual Exclusion

A critical section 1s a section of code in which a
Pr ocess accesses shared resour ces.

dThus, the execution of critical sections must be
mutually exclusive (e.g., at most one process can
bein itscritical section at any time).

dThecritical-section problemisto design a
protocol that processes can use to cooper ate.

llllllll
lllll

int count; // shared Tttt

||

||

||
count++;

||

||

||

|| ||

|| ||
count--; cout << count;

|| || 8

|| ||

|| ||

The Critical Section Protocol

do { QA critical section protocol
consists of two parts: an

entr_y section and an exit
section.

critical section

dBetween them isthe

exit section critical section that must
run in a mutually
exclusive way.

} while (1);

Solutions to the Critical Section Problem

dAny solution to the critical section problem
must satisfy the following three conditions:

“*Mutual Exclusion
“*Progress
“*Bounded Waiting

dMoreover, the solution cannot depend on
CPU’srelative speed and scheduling poalicy.

10

Mutual Exclusion

If aprocess P isexecuting in itscritical section,
then no other processes can be executing in thear
critical sections.

dTheentry protocol should be capable of
blocking processes that wish to enter but cannot.

dMoreover, when the processthat isexecuting in
itscritical section exits, the entry protocol must
be ableto know thisfact and allows a waiting
processto enter.

11

Progress

If no processisexecuting in itscritical section
and some processes wish to enter their critical
sections, then

“*Only those processesthat are waiting to enter
can participate in the competition (to enter
their critical sections).

“*No other process can influence this decision.
“*Thisdecision cannot be postponed indefinitely.

12

Bounded Waiting

JAfter aprocess made arequest to enter its
critical section and beforeit isgranted the
permission to enter, there exists a bound on the
number of timesthat other processesare
allowed to enter.

JHence, even though a process may be blocked
by other waiting processes, it will not be waiting
forever.

13

Software Solutions for
Two Processes

d Suppose we have two processes, P, and P;.

L et one process be P, and the other be P;, where
j=1-1. Thus/ifi=0(resp.,,i =1),thenj=1
(resp., | = 0).

dWewant to design the enter-exit protocol for a

critical section so that mutual exclusion is
guar anteed.

14

Algorithm I: 1/2
J Global variable

PrOCESS Pi_]c o turn controlswho
IT ITISNOt My turn, 1 wal
do { ke can enter the
E enter critical section.

QSince turx iseither

) ; Oor 1, only onecan
critical section enter
turn = j; ' |

eX't QHowever, processes

areforcedtorunin
an alter nating way.

| am done, it isyour turn now s

Algorithm I. 2/2

process P,

do { If itisnot my turn, | wait

L 4
L 4
L 4

L 4
L 4

o enter

while (turn != 1i);

critical section

| am done, it Isyour turn now

J Thissolution does
not fulfill the
progress condition.

1T P; exits by setting
turn toil and
terminates, P, can
enter but cannot
enter again.

dThus, an irrelevant
process can block
other processes
from entering a
critical section.

Algorithm II: 1/2

bool flagl2]; QVariable flag[i]

o I:am Interested isthe“state” of
: = waitfor you process P;:
Son s Interested or not-

T P e
hile kflag[J]) ; P, expressesits
critical section Intention to enter,
waits for P to exit,
exit entersits sectlon
Y and finally changes

: 3 to“l am out” upon
} | am not interested exit .

17

Algorithm II: 2/2

bool flagl2l; QdThe correctness of this
| am interested algorithm istiming

do { £ 1 waitfor you dependent!
Fo s QIf both processes set

flag[ils'= TRUE; |enter flag[i] and

flag[j] tO TRUE at
— ; the sametime, then

Critical section both will be looping at

oit thewnile forever

and no one can enter.

‘ dBounded waiting does
} | am not interested not hold.

)

L]
]
 J

.
)

18

Algorithm lll: a Combination 1/4

bool flagl2]; [/ processP,
int turn;
| am interested

do { g yield to you first

flag[i] "=

turn = j;
while (flagljl

| am gone = _ o
critical section wait while you are
Interested and it is
fl] = FALSE; '
exit your wrn.

Algorithm Ill: Mutual Exclusion 2/4

flag[i] = TRUE; € = = = process P,
turn = j; \\
while (flag[j] && turn == 73j);

 If both processesarein their critical sections, then
“flag[j] && turn == 7 (P;) and flag[i]\é& turn
== i (P) areboth FALSE. \
wflagl[i] and £lag[j] areboth TRUE -_
Thus, turn == iand turn == j are FALSE.

“*Since turn can hold onevalue, only oneof turn == i
or turn == 7 ISFALSE, but not both.

<*We have a contradiction and P; and P, cannot bein their

critical sections at the sametime.
20

Algorithm lll: Progress 3/4

flag[i] = TRUE; process P,
turn = j;
while (flagl[j] && turn == j);

d1f P, iswaiting to enter, it must be executing its
while loop.

JSuppose P; isnot initscritical section:

It P, |snot interested in entering, £1lag[§] was
set to FALSE when P; exits. Thus, P; may enter.

ol f P wishesto enter and setsflag[j] to TRUE,
it will set turn to i and P; may enter.

d1In both cases, processesthat are not waiting do not
block the waiting processes from entering.

21

Algorithm Ill: Bounded Waiting 4/4

flag[i] = TRUE; process P,
turn = j;
while (flagl[j] && turn == j);

d When P; wishesto enter:

<1f P, isoutside of itscritical section, then £1ag[j] is
FALSE and P, may enter.

<If P,isinitscritical section, eventually it will set
flag[j] to FALSE and P, may enter.

<If P;isin the entry section, P, may enter If it reaches
while first. Otherwise, P, entersand P, may enter
after P, sets f1ag[j] to FALSE and exits.

d Thus, P, waits at most one round!

22

Hardware Support

dTherearetwo types of hardware
synchronization supports:

“*Disabling/Enabling interrupts. Thisisslow
and difficult to implement on multipr ocessor
systems.

“*Special privileged machine instructions:.
»Test and set (TS)

> Swap
»Compare and Swap (Cs)

23

Interrupt Disabling

do { JdBecause interruptsare
disabled, no context
entry switch will occur In a

disable interrupts critical section.

dinfeasiblein a
‘ critical section ‘ multiprocessor system

_ because all CPUs must
be infor med.

: exit dSome featuresthat
} while (I); depend on interrupts
(e.g., clock) may not
work properly.

24

Special Machine Instructions

d Atomic: Theseinstructions execute as one
uninterruptible unit. More precisaly, when such
an instruction runs, all other instructions being
executed in various stages by the CPUs will be
stopped (and perhapsre-issued later) until this
Instruction finishes.

dThus, If two such instructions areissued at the
same time, even though on different CPUs, they
will be executed sequentially.

dPrivileged: Theseinstructionsare, in general,
privileged, meaning they can only executein
supervisor or kernel mode.

25

The Test-and-Set Instruction

bool TS (bool *key)

{

bool save = *key;
*key = TRUE;
return save;

}

dMutual exclusion is
obviousasonly oneTs

INnstruction can run at a

time.

JHowever, progress and
bounded waiting may
not be satisfied.

bool 1lock = FALSE;

do {

entry

while (TS (&lock));

lock FALSE; Jexit

} while (1) ;

26

Problems with Software and
Hardware Solutions

1 All of these solutions use busy waiting.

 Busy waiting means a process waits by executing a tight
loop to check the status/value of a variable.

1 Busy waiting may be needed on a multiprocessor system;
however, it wastes CPU cyclesthat some other processes
may use productively.

 Even though some per sonal/lower-end systems may allow
usersto use some atomic instructions, unlessthe system
Islightly loaded, CPU and system perfor mance can be
low, although a programmer may “think” hig'her
program looks mor e efficient.

1 So, we need a better solution.

27

