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Multi-Object Synchronization

Spring 2019
We must know.  We will know.

David Hilbert

*Throughout the course we will use overheads that were adapted from those distributed from the textbook website.
Slides are from the book authors, modified and selected by Jean Mayo, Shuai Wang and C-K Shene. 



Multi-Object Programs

qWhat happens when we try to synchronize across 
multiple objects in a large program?
ØEach object with its own lock, condition 

variables
ØIs locking modular?

qPerformance
qSemantics/correctness
qDeadlock
qEliminating locks
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Several Considerations

qMultiprocessor Performance: Modern 
computers have increasing numbers of processors.  
The design of shared objects can have a large 
impact on multiprocessor performance.

qCorrectness: For programs with multiple 
shared objects, we face a problem similar to the 
once faced when reasoning about atomic loads and 
stores.

qDeadlock: Multiple objects may hold multiple 
locks.  As a result, deadlock could occur.
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Multiprocessor Lock Performance

qLocking: A lock implies mutual exclusion.  Hence, 
access to a shared object can limit parallelism.

qCommunication of Shared Data: Performance 
of a modern processor can vary significantly depending 
on whether the data needed by the processor is already 
in its cache or not.  On a multiprocessor, shared data 
protected by a lock will often need to be copied from 
one cache to another.

qFalse Sharing: The hardware keeps track of shared 
data at a fixed granularity, often in units of a cache of 
32 or 64 bytes.  This can cause performance problems if 
multiple data structures with different sharing 
behavior fit in the same cache memory.
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A Simple Test of Cache Behavior
qArray of 1K counters (small enough to fit in cache), 

each protected by a separate spinlock.  
qThe program iterates through the array.  
qFor each item, it acquires the lock, increments the 

counter, and releases the lock.
qThis loop repeats 1000 times to improve 

measurement precision.
qTests:

ØTest 1: one thread loops over array
ØTest 2: two threads loop over disjoint arrays
ØTest 3: two threads loop over single array
ØTest 4: two threads loop over alternate elements in 

single array
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Results (64 core AMD Opteron)
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Scenario Number of CPU Cycles
One thread, one array 51.2
Two threads, two arrays 52.5
Two threads, one array 197.4
Two threads, alternate elements of one array 127.3

Number of CPU cycles to execute a simple critical section to increment a counter.
Threads assigned to processor cores that do not share a cache.
Performance difference between these cases largely disappears when threads

are assigned to cores that share an L2 cache.



Lock Contention
qLocking may remain a bottleneck to good 

performance on a multiprocessor.  Locking a 
popular item can be a source of contention.

qMCS locks (if locks are mostly busy): MCS is 
the initial of the authors of the original paper, John 
M. Mellor-Crummey and Michael L. Scott*.   MCS 
is an implementation of a spinlock optimized for 
the case when there are a significant number of 
waiting threads.

qRCU locks (if locks are mostly busy, and data is 
mostly read-only): RCU = Read-Copy-Update.  
RCU reduces  the overhead for read-only at a cost 
of increased for non-read-only.

7*John M. Mellor-Crummey and Michael L. Scott, Algorithms for scalable synchronization on shared-memory 
multiprocessors, ACM Transactions on Computer Systems, Volume 9 (1991), No. 1, pp. 21-65.



Problem with Test-and-Set
Counter::Increment() {

while (test_and_set(&lock))  // while BUSY
;                        //  spin

value++;
lock = FREE; 
memory_barrier(); 

} 

qWhat happens if many processors try to acquire the 
lock?
ØCounter value must be communicated from one lock 

holder to the next.
ØThe critical section will take significantly longer on a 

multiprocessor than on a single processor.
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Problem with Test and Test-and-Set
Counter::Increment() {
while (lock == BUSY || test_and_set(&lock)) // while BUSY

;                                       //   spin
value++;
lock = FREE; 
memory_barrier(); 

} 

How about check the availability of the lock before 
actually starting to spin?

This way, the chance to start spinning is 
lower.
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Test-and-Test-and-Set 
Performance
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Measurements taken on a 64-core
AMD Opteron 6262.

The non-smooth curves are typical
of measurements of real system.



What If Locks are Still Mostly 
Busy?

qMCS Locks
ØOptimize lock implementation for when lock is 

contended
qRCU (read-copy-update)

ØEfficient readers/writers lock used in Linux 
kernel

ØReaders proceed without first acquiring lock
ØWriter ensures that readers are done

qBoth rely on atomic read-modify-write 
instructions
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Atomic CompareAndSwap

q Operates on a memory word
q Check that the value of the memory word hasn’t changed 

from what you expect
Ø e.g., no other thread did CompareAndSwap earlier 

since the last inspection.
q If it has changed, return an error (and loop)
q If it has not changed, set the memory word to a new value
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CompareAndSwap(*p, old, new)
{

if (*p != old) {  // if changed
return FALSE;  // not the same 

}
*p = new; // if not changed, update
return TRUE;      // no change

} 



MCS Lock
qMaintain a list of threads waiting for the lock

ØFront of list holds the lock
ØMCSLock::tail is last thread in list
ØNew thread uses CompareAndSwap to add to the tail

qLock is passed by setting next->needToWait = 
FALSE;
ØNext thread spins while its needToWait is TRUE

TCB {
TCB *next;             // next in line
bool needToWait;   

}
MCSLock {

Queue *tail = NULL;    // end of line
}
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MCS Lock Implementation
MCSLock::acquire() {

Queue ∗oldTail = tail; 

myTCB−>next = NULL;
myTCB−>needToWait = TRUE;
while (!CompareAndSwap(&tail, 

oldTail, &myTCB)) { 
oldTail = tail;

} 
if (oldTail != NULL) { 

oldTail−>next = myTCB;
memory_barrier(); 
while (myTCB−>needToWait)

;
}

}

MCSLock::release() { 
if (!CompareAndSwap(&tail, 

myTCB, NULL)) { 
while (myTCB−>next == NULL)

;
myTCB−>next−>needToWait=FALSE;

}
}
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// Compare-and-Swap is atomic
CompareAndSwap(*p, old, new)
{

if (*p != old) {
return FALSE

}
*p = new;
return TRUE;

}
try again if someone else
changed tail in the meantime

if oldTail == NULL, lock acquired 

need to wait and spin

someone is waiting, spin

if tail== myTCB, no one is waiting.
MCS lock is now free.



MCS Lock Implementation
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myTCB−>next = NULL;        // initially no next &
myTCB−>needToWait = TRUE;  //    need to wait
while (!CompareAndSwap(&tail, oldTail, &myTCB)) { 

oldTail = tail;
}

tail

oldTail myTCB

tail

oldTail myTCB

if tail = oldTail:

if tail != oldTail:

other processors changed the tail

every iteration moves oldTail to tail
until they are equal

T

T

T T

T T

F

F

MCSLock::acquire()
first part: add to tail

myTCB is the tail

once tail is the same
as oldTail, we have
the previous case



MCS Lock Implementation
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if (oldTail != NULL) { 
oldTail−>next = myTCB;
memory_barrier(); 
while (myTCB−>needToWait)

;
}

tail

oldTail myTCB

TT TF

tail

oldTail myTCB

TT TF

then, spin!link myTCB to the tail of the list

MCSLock::acquire()
second part: complete the list



MCS Lock Implementation
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if (!CompareAndSwap(&tail, myTCB, NULL)) { 
while (myTCB−>next == NULL)

;
myTCB−>next−>needToWait=FALSE;

}

tail

NULLmyTCB

tail

NULLmyTCB

if tail = myTCB:

if tail != myTCB:
TT T

F

F

tail is set to NULL

MCSLock::release()

Spin while I do not
have a “next”.

Hopefully, some one
will join and wait.

set my next to “go” (i.e., stop 
spinning) and handle the lock
to him!



MCS In Operation
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Initially, tail is NULL (FREE)

to acquire the lock, thread A atomically 
sets tail to point to A’s TCB

Threads B and C add to the tail.
They spin on their TCB’s needToWait

Thread A hands the lock
To B by clearing B’s needToWait

B hands the lock to C by clearing C’s needToWait flag

Thread C releases the lock by setting tail back to NULL



Read-Copy-Update: 1/2
q Goal: very fast reads to shared data 

Ø Reads proceed without first acquiring a lock
Ø OK if write is (very) slow

q Restricted update
Ø Writer computes new version of data structure 
Ø Publishes new version with a single atomic instruction

q Multiple concurrent versions
Ø Readers may see old or new version

q Integration with thread scheduler
Ø Because there may be readers still in progress when an update is 

made, the shared object must maintain multiple versions of its state 
to guarantee that an old version is not freed until all readers have 
finished accessing it.

Ø The time from when an update is published until the last reader is 
done with the previous version is called the grace period.  

Ø The RCU lock uses information provided by the thread scheduler 
to determine when a grace period ends.
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Read-Copy-Update: 2/2
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Timeline for an update concurrent with several reads for 
a data structure accessed by new readers



RCU Lock Implementation: 1/7
qReaders disable interrupts on entry

ØGuarantees they complete critical section in a timely 
fashion

ØNo read or write lock
qWriter

ØAcquire write lock
ØCompute new data structure
ØPublish new version with atomic instruction
ØRelease write lock
ØWait for time slice on each CPU
ØOnly then, garbage collect old version of data structure
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RCU Clock Implementation: 2/7
qHere is what we need:

ØreadLock() – enter read-only critical section
ØreadUnlock() – exit read-only critical section
ØwriteLock() – enter read-write critical section
ØwriteUnlock() – exit read-write critical section
Øpublish() – atomically update shared data
Øsynchronize() – wait for all concurrently active 

readers to exit critical section, to allow for garbage 
collection of old versions of the object

ØquiescentState() – Of the read-only threads on 
this processor who were active during the most recent 
publish(), all have exited the critical section.
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RCU Lock Implementation: 3/7
qRCU allows one write at a time, and it allows 

reads to overlap each other and writes.
qThe initial version is v0, and overlapping writes 

update the version to v1, v2, and then v3.
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RCU Lock Implementation: 4/7
qThe central goal of implementing RCU is to 

minimize the cost of read critical sections:
ØThe system must allow an arbitrary number of  

concurrent readers
ØConversely, writes can have high latency
Ø In particular, grace periods can be long; however, write 

overhead (i.e., CPU time needed per write) should be 
modest.

qA common technique for achieve these goals is to 
integrate the RCU implementation with that of the 
thread scheduler.
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RCU Lock Implementation: 5/7
qTwo things are needed from the scheduler:

ØRead-only critical sections complete without being 
interrupted

ØWhenever a thread on a processor is interrupted, the 
scheduler updates some per-processor RCU state.  
Then, once a write completes, synchronize() 
simply waits for all processors to be interrupted at least 
once.

ØAt that point, the old version of the object is known to 
be quiescent (i.e., no thread has access to the old 
version other than the writer who changed it).
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RCU Lock Implementation: 6/7
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// Global state
Spinlock globalSpin; 
long     globalCounter; 

// One per processor
DEFINE_PER_PROCESSOR

(static long quiescentCount);

// Per-lock state
Spinlock  writerSpin;

// called by scheduler whenever that
//    processor is interrupted.
// it updates that processor’s
//    quiescentCount to match the
//    current globalCounter. 
quiescentState() {

memory_barrier();
PER_PROCESSOR_VAR(

quiescentCount) = globalCounter;
memory_barrer();

}

ReadLock() {
disableInterrupt();

}

ReadUnlock() {
enableInterrupts();

}

Data Declarations Update the Local Counter

Reader Lock and Unlock
Read-only critical sections complete 
without being interrupted



RCU Lock Implementation: 7/7
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writeLock() { 
writerSpin.acquire();

}

writeUnlock() {  
writeSpin.release(); 

}

publish(void **pp1, void *p2) {
memory_barrier();
*pp1 = p2;
memory_barrier();

}

synchronize() {
int p, c;
globalSpin.acquire();   // update sync global count 

c = ++globalCounter;
globalSpin.release();                              
FOREACH_PROCESSOR(p) {  // once quiescentCount is as large as c, 

//   on every processor, synchronize() knows
//   that no remaining readers can observe 
//   the old version

while (PER_PROC_VAR(quiescentCount,p) < c) {
sleep(10);         // release CPU for 10ms

}
}

}



Linked List Operations: 1/4
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typedef struct Elements {
int key;
int value;
struct Elements *next;

} Element;

class RCUList {
private:

RCULock rcuLock;
Element *head;

public:
bool search(int key, int *value);
void insert(Element *item, int value);
bool remove(int key);

};



Linked List Operations: 2/4
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bool RCUList::search(int key, int *valuep) {
bool result = FALSE;
Element *current;

rckLock.readLock();
current = head;
for (current = head; current != NULL; current=current->next) {

if (current->key == key) {
*valuep = current->value;
result = TRUE;
break;

}
}
rcuLock.readUnlock();
return result;

}

This version allows concurrent search (i.e., read-only).  
The linked list is locked by a RCU ReadLock() and released by ReadUnlock()



Linked List Operations: 3/4
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bool RCUList::insert(int key, int value) {
Element *item;

rcuLock.writeLock();                 // writer lock acquired
item = (Element *) malloc(sizeof(Element)); // get memory
item -> key = key;                 // initialize the node
item -> value = value;
item => next = head;

rcuLock.publish(&head, item);      // publish it atomically

rcuLock.writeUnlock();               // release writer lock

rcuLock.synchronize();               // wait until no reader
}                                      //   has old version

Insertion must be a writer.
It always inserts at the end (i.e., the new node becomes the new head)
The list is locked first, a new node is created.
The new node is published and unlocks the list.
Then, wait until no reader has old versions.



Linked List Operations: 4/4
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bool RCUList::remove(int key) {
bool found = FALSE;
Element *prev, *current;

rcuLock.writeLock();
for (prev = NULL, current = head; current != NULL; 

prev=current, current = current->next) {
if (current->key == key) {   // found the node

found = TRUE;
if (prev == NULL)          // it is the head!

rcuLock.publish(&head, current->next);  // update new head
else

rcuLock.publish(&(prev->next), current->next);
}                            // update the previous node

rcuLock.writeUnlock();
if (found) {

rcuLock.synchronize();         // wait until no reader has old
free(current);

}
return found;

}



Reducing Lock Contention
qFine-grained locking

ØPartition object into subsets, each protected by its own 
lock

ØExample: hash table buckets
qPer-processor data structures

ØPartition object so that most/all accesses are made by one 
processor

ØExample: per-processor heap
qOwnership/Staged architecture

ØOnly one thread at a time accesses shared data
ØExample: pipeline of threads
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Some Approaches

qInsert a delay in the spin loop
ØHelps but acquire is slow when not much 

contention
qSpin adaptively

ØNo delay if few waiting
ØLonger delay if many waiting
ØGuess number of waiters by how long you wait

qMCS
ØCreate a linked list of waiters using 

compareAndSwap
ØSpin on a per-processor location
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Some Terms

qResource: any (passive) thing needed by a 
thread to do its job (CPU, disk space, memory, 
lock)
ØPreemptable: can be taken away by OS
ØNon-preemptable: must leave with thread 

(i.e., released voluntarily)
qStarvation: thread waits indefinitely
qDeadlock: circular waiting for resources

ØDeadlock => starvation, but not vice 
versa
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Example: Two Locks

Thread A
lock1.acquire();
lock2.acquire();
lock2.release();
lock1.release();

Thread B
lock2.acquire();
lock1.acquire();
lock1.release();
lock2.release();
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Thread A Thread B Comment
acquire lock1 Lock 1 not available

acquire lock2 Lock 2 not available
acquire lock2 Thread A waits

acquire lock1 Thread B waits
deadlock!!!



Bidirectional Bounded Buffer
Thread A

buffer1.put(data);
buffer1.put(data);

……
buffer2.get();
buffer2.get();

Thread B
buffer2.put(data);
buffer2.put(data);

……
buffer1.get();
buffer1.get();

Suppose each of buffer1 and buffer2 has only 1 empty slot left
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Thread A Thread B Comment
buffer1.put() Buffer 1 full

buffer2.put() Buffer 2 full
buffer1.put() Thread A blocks

Buffer2.put() Thread B blocks



Two Locks & a C.V.
Thread A

lock1.acquire();
……
lock2.acquire();
while (need to wait) {

condition.wait(lock2);
}
lock2.release();
……

lock1.release();

Thread B
lock1.acquire();

……
lock2.acquire();
……
condition.signal(lock2);
……
lock2.release();
…

lock1.release();
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Thread A Thread B Comment
lock1.acquire() lock1 not available
lock2.acquire() lock2 not available
cv.wait() Thread A waits

lock1.acquire() Thread B cannot enter
Deadlock!
No one can free A 



Dining Philosophers
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qEach philosopher must picks up his left chopstick 
and the his right one before eating.

qIt is possible that ALL philosophers have their left 
chopstick, but fail to get their right one.

qThen, we have a deadlock.
qThere is a typical “circular waiting” 
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System Model
qSystem resources are used in the following way:

vRequest: If a process makes a request (i.e., 
semaphore wait or monitor acquire) to use a 
system resource which cannot be granted 
immediately, then the requesting process blocks 
until it can acquire the resource successfully.

vUse: The process operates on the resource (i.e., 
in critical section).

vRelease: The process releases the resource (i.e., 
semaphore signal or monitor release).
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Deadlock: Definition
qA set of processes is in a deadlock state when 

every process in the set is waiting for an event 
that can only be caused by another process in the 
same set.

qThe key here is that processes are all in the 
waiting state.
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Deadlock Necessary Conditions
qIf a deadlock occurs, then each of the 

following four conditions must hold.
vMutual Exclusion:  At least one resource 

must be held in a non-sharable way.
vHold and Wait: A process must be holding a 

resource and waiting for another.
vNo Preemption: Resource cannot be 

preempted.
vCircular Waiting: P1 waits for P2, P2 waits 

for P3, …, Pn-1 waits for Pn, and Pnwaits for P1.
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They are NOT Sufficient Conditions
qThese conditions are not sufficient.
qEven though some processes involve in a circular 

waiting situation, the system may not be 
deadlocked.

qProcess P1 waits for a resource being held by 
process P2, P2 waits for a resource being held by 
process P3, and P3 waits for a resource being held 
by process P1. 

qHowever, if a process A releases a resource that P1
needs, this circular waiting is broken.

qWill show examples later.



Question

qHow does the naïve solution to the Dining 

Philosophers problem meet the necessary conditions 

for deadlock?

ØMutual Exclusion

ØNo Preemption

ØWait and Hold

ØCircular Waiting

qHow can we modify it to prevent deadlock?

ØLefty-Righty (Weirdo), four-chair, monitor solution, etc.

ØYou have learned enough in Concurrent Computing.
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Preventing Deadlock

qMake sure one of the four necessary conditions fail.  
You learned this in Concurrent Computing.

qProvide enough number of resources so that they do not 
have to be shared.  

qLimit program from doing anything that might lead to 
deadlock.

qPredict the future: If we know what program will do, 
we can tell if granting a resource might lead to deadlock

qDetect and recover: If we can rollback a thread, we can 
fix a deadlock once it occurs
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Deadlock Avoidance: 1/5
qEach process provides the maximum number of 

resources of each type it needs.
qWith these information, there are algorithms that 

can ensure the system will never enter a deadlock 
state.  This is deadlock avoidance.

qA sequence of processes <P1, P2, …, Pn> is a safe 
sequence if for each process Pi in the sequence, 
its resource requests can be satisfied by the 
remaining resources and the sum of all resources
that are being held by P1, P2, …, Pi-1.  This means 
we can suspend Pi and run P1, P2, …, Pi-1 until they 
complete.  Then, Pi will have all resources to run.



46

Deadlock Avoidance: 2/5
qA state is safe if the system 

can allocate resources to each 
process (up to its maximum, 
of course) in some order and 
still avoid a deadlock.

qThus, a state is safe if there 
is a safe sequence.  Otherwise, 
if no safe sequence exists, the 
system state is unsafe.

qAn unsafe state is not 
necessarily a deadlock state.  
On the other hand, a 
deadlock state is an unsafe 
state.

safe

unsafe

deadlock
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Deadlock Avoidance: 3/5
qA system has 12 tapes and three processes A, B, C.  

At time t0, we have:

qThen, <B, A, C> is a safe sequence (safe state).
qThe system has 12-(5+2+2)=3 free tapes.
qSince B needs 2 tapes, it can take 2, run, and 

return 4.  After B completes, the system has (3-
2)+4=5 tapes.  A now can take all 5 tapes and run.  
Finally, A returns 10 tapes for C to take 7 of them.

Max needs Current holding Will need

A 10 5 5
B 4 2 2
C 9 2 7

3 free tapes
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Deadlock Avoidance: 4/5
qA system has 12 tapes and three processes A, B, C.  At 

time t1, C has one more tape:

qThe system has 12-(5+2+3)=2 free tapes.
qAt this point, only B can take these 2 and run.  It 

returns 4, making 4 free tapes available.
qBut, none of A and C can run, and a deadlock occurs.
qThus, granting C one more tape makes the system 

unsafe and leads to a deadlock.

Max needs Current holding Will need
A 10 5 5
B 4 2 2
C 9 3 6
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Deadlock Avoidance: 5/5
qA deadlock avoidance algorithm

ensures that the system is always in a safe state.  
Therefore, no deadlock can occur.

qResource requests are granted only if in doing 
so the system is still in a safe state.

qConsequently, resource utilization may be lower
than those systems without using a deadlock 
avoidance algorithm.
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Banker’s Algorithm: 1/6
qThe idea of Banker’s algorithm is very simple.
qSuppose you have $1,000 and your brothers 

Adam, Bill and Cassy borrowed $400, $300 and 
$100, respectively.  Thus, you only have $200!

qWhat if Adam asks for $600 more?
qYou don’t have that amount for him.  But, you 

think: if Bill and Cassy will return their $400 and 
$300 (assuming everyone is honest), respectively, 
you will have enough money for Adam.

qIn this way, you just ask Adam to wait until Bill 
and Cassy return the money.

qBanker’s algorithm works exactly the same way.
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Banker’s Algorithm: 2/6
qThe system has m resource types and n processes.
qEach process must declare its maximum needs.
qThe following arrays are used:

vAvailable[1..m]: one entry for each resource.  Available[i]=k
means resource type i has k units available.

vMax[1..n,1..m]: maximum demand of each process.  
Max[i,j]=k means process i needs k units of resource j.

vAllocation[1..n,1..m]: resources allocated to each process.  
Allocation[i,j]=k means process i is currently allocated k
units of resource j.

vNeed[1..n,1..m]: the remaining resource need of each 
process.  Need[i,j]=k means process i needs k more units of 
resource j.  Thus, Max = Allocation + Need.
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Banker’s Algorithm: 3/6
qWe will use A[i,*] to indicate the i-th row of matrix 

A.
qGiven two arrays A[1..m] and B[1..m], A £ B if A[i]
£ B[i] for all i.  Given two matrices A[1..n,1..m]
and B[1..n,1..m], A[i,*] £ B[i,*] if A[i,j] £ B[i,j] for 
all j.

qWhen a resource request is made by process i, this 
algorithm calls the Resource-Request algorithm to 
determine if the request can be granted.  The 
Resource-Request algorithm calls the Safety 
Algorithm to determine if a state is safe. 
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Banker’s Algorithm: 4/6 
Safety Algorithm

1.  Let Work[1..m] and Finish[1..n] be two working arrays
2.  Work = Available;              // make a working copy
3.  Finish[i] = FALSE for every i; // no one finishes yet
4.  Find an i such that the following conditions are true
5.    Finish[i] = FALSE;           // process i not yet finish
6.    Need[i,*] <= Work;           //  & its need can be met
7.  if (no such i exists)          // if no such i found,
8.    goto Step 13;                //   check if all done
9.  else {                         // such an i found !
10.    Work = Work + Allocation[i,*]; // run it and reclaim
11. goto Step 4;                 // go back to find next one
12. }
13. if (Finish[i] = TRUE for all i)// has everyone done?
14. the system is in a safe state// yes, then we are safe
15. else                           // otherwise, we are not safe
16.    The system is not in a safe state;
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Banker’s Algorithm: 5/6 
Safety Algorithm

int  Work[1..m];     // working array, one entry per resource
bool Finish[1..n];   // working array, one entry per process
int  i;
bool done, found;

Work = Available;    // use Work rather than Available directly
Finish[*] = FALSE;   // no one finishes yet
done = FALSE;        // used to control the while loop
while (!done) {
for (i=1, found=FALSE; i <= n; i++) { // search a process …
if (!Finish[i]                  // that has not finished

&& Need[i,*] <= Work) {   //   and can be satisfied
Work = Work + Allocation;     // allocate and reclaim
Finish[i] = TRUE;             // this process is done
found = TRUE;                 // did find a process
break;                        // break and find another

}
}
if (!found)                       // if failed to find one

done = TRUE;                   // then while is done!
}
if (Finish[i] == TRUE for all i)
system is in a safe state

else
system is not in a safe state (i.e., unsafe);   

Work is a working
copy of Available

find a process whose
Need can be satisfied. 

Let this one run.
After it finishes, the
Allocation is taken
Back and puts into
the Available pool.

break this for and find the next
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Banker’s Algorithm: 6/6 
Resource-Request Algorithm
if (Request[i,*] <= Need[i,*]) {        // must request less than Need[]
if (Request[i,*] <= Available) {      // enough resource to satisfy? 
Available = Available – Request[i,*];    // pretend we can allocate it
Allocation[i,*] = Allocation[i,*] + Request[i,*]; // reduce Available[]
Need[i,*] = Need[i,*] – Request[i,*];    // reduce Need[]
call the safety algorithm;            // after this, is the system safe?
if (the system is in a safe state)     // if safe, allocation is successful

allocation is done, process i has the needed resource
else {             // otherwise, system is not safe.  Restore all values

restore Allocation, Need and Available to their previous state;
process i must wait until resources will become available;

}
}
else                                  // insufficient resource

process i has to wait because of insufficient resources
else                                    // request must be <= need

this is an error
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Example: 1/4
q Consider a system of 5 processes A, B, C, D and E, and 3 

resource types (X=10, Y=5, Z=7). At time t0, we have

q A safe sequence is <B,D,E,C,A>.  Since B’s [1,2,2]£ Avail’s 
[3,3,2], B runs.  Then, Avail=[2,0,0]+[3,3,2]=[5,3,2].    D runs 
next.  After this, Avail=[5,3,2]+[2,1,1]=[7,4,3].  E runs next. 

q Avail=[7,4,3]+[0,0,2]=[7,4,5].  Since C’s [6,0,0]£Avail=[7,4,5], C
runs.  After this, Avail=[7,4,5]+[3,0,2]=[10,4,7] and A runs.

q There are other safe sequences: <D,E,B,A,C>, <D,B,A,E,C>, …

X Y Z X Y Z X Y Z X Y Z
A 0 1 0 7 5 3 7 4 3 3 3 2
B 2 0 0 3 2 2 1 2 2
C 3 0 2 9 0 2 6 0 0
D 2 1 1 2 2 2 0 1 1
E 0 0 2 4 3 3 4 3 1

Allocation Max Need=Max-Alloc Available
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Example: 2/4
q Now suppose process B asks for 1 X and 2 Zs.  More 

precisely, RequestB = [1,0,2].  Is the system still in a safe state 
if this request is granted?

q Since RequestB = [1,0,2] £ Available = [3,3,2], this request 

may be granted as long as the system is safe.

q If this request is actually granted, we have the following:

X Y Z X Y Z X Y Z X Y Z
A 0 1 0 7 5 3 7 4 3 2 3 0
B 3 0 2 3 2 2 0 2 0
C 3 0 2 9 0 2 6 0 0
D 2 1 1 2 2 2 0 1 1
E 0 0 2 4 3 3 4 3 1

Allocation Max Need=Max-Alloc Available

[3,0,2]=[2,0,0]+[1,0,2] [0,2,0]=[1,2,2]-[1,0,2] [2,3,0]=[3,3,2]-[1,0,2]
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Example: 3/4

qIs the system in a safe state after this allocation?
qYes, because the safety algorithm will provide a 

safe sequence <B,D,E,A,C>.  Verify it yourself.
qHence, B’s request of [1,0,2] can safely be made.

X Y Z X Y Z X Y Z X Y Z
A 0 1 0 7 5 3 7 4 3 2 3 0
B 3 0 2 3 2 2 0 2 0
C 3 0 2 9 0 2 6 0 0
D 2 1 1 2 2 2 0 1 1
E 0 0 2 4 3 3 4 3 1

Allocation Max Need=Max-Alloc Available
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Example: 4/4

q After this allocation, E’s request RequestE=[3,3,0] 
cannot be granted since RequestE=[3,3,0] £[2,3,0] is 
false.

q A’s request RequestA=[0,2,0] cannot be granted because 
the system will be unsafe.

q If RequestA=[0,2,0] is granted, Available=[2,1,0].
q None of the five processes can finish and the system is 

unsafe.

X Y Z X Y Z X Y Z X Y Z
A 0 1 0 7 5 3 7 4 3 2 3 0
B 3 0 2 3 2 2 0 2 0
C 3 0 2 9 0 2 6 0 0
D 2 1 1 2 2 2 0 1 1
E 0 0 2 4 3 3 4 3 1

Allocation Max Need=Max-Alloc Available
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Deadlock Detection
qIf a system does not use a deadlock prevention 

or a deadlock avoidance algorithm, then a 
deadlock situation may occur.  Thus, we need
ØAn algorithm that can examine the system 

state to determine if a deadlock has occurred.  
This is a deadlock detection algorithm.

ØAn algorithm that can help recover from a 
deadlock.  This is a recovery algorithm.

qA deadlock detection algorithm does not have 
to know the maximum need Max and the 
current need Need.  It uses only Available, 
Allocation and Request.
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Deadlock Detection Algorithm
1.  Let Work[1..m] and Finish[1..n] be two working arrays
2.  Work = Available;              // make a working copy
3.  Finish[i] = FALSE for every i; // no one finishes yet
4.  Find an i such that the following conditions are true
5.    Finish[i] = FALSE;           // process i not yet finish
6.    Request[i,*] <= Work;        //  & its request can be met
7.  if (no such i exists)          // if no such i found,
8.    goto Step 13;                //   check if all done
9.  else {                         // such an i found !
10.    Work = Work + Allocation[i,*]; // run it and reclaim
11. goto Step 4;                 // go back to find next one
12. }
13. if (Finish[i] = TRUE for all i)// has everyone done?
14. the system is in a safe state// yes, then we are safe
15. else                           // otherwise, we are not safe
16.    The system is not in a safe state;

In deadlock detection, we do not have Max and hence Need can not be computed.
Therefore, users just make their Request[ ]!
The remaining is all the same as the banker’s algorithm.
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Deadlock Detection Algorithm
int  Work[1..m];     // working array, one entry per resource
bool Finish[1..n];   // working array, one entry per process
int  i;
bool done, found;

Work = Available;    // use Work rather than Available directly
Finish[*] = FALSE;   // no one finishes yet
done = FALSE;        // used to control the while loop
while (!done) {
for (i=1, found=FALSE; i <= n; i++) { // search a process …
if (!Finish[i]                  // that has not finished

&& Request[i,*] <= Work) {    // and can be satisfied
Work = Work + Allocation;     // allocate and reclaim
Finish[i] = TRUE;             // this process is done
found = TRUE;                 // did find a process
break;                        // break and find another

}
}
if (!found)                       // if failed to find one

done = TRUE;                   // then while is done!
}
if (Finish[i] == TRUE for all i)
system is in a safe state

else
processes with Finish[ ] being FALSE are deadlocked;

The detection
algorithm is the
same as the safety
algorithm, except
that we don’t have
Need[] as we don’t
have Max[].

Instead, we just use
Request[] directly.
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Example: 1/2

q Suppose maximum available resource is [7,2,6] and the 
current state of resource allocation is shown above.

q Is the system deadlocked?  No.  We can run A first, making 
Available=[0,1,0].

q Then, we run C, making Available=[3,1,3].  This is followed 
by D, making Available=[5,2,4], and followed by B and E.

X Y Z X Y Z X Y Z
A 0 1 0 0 0 0 0 0 0
B 2 0 0 2 0 2
C 3 0 3 0 0 0
D 2 1 1 1 0 0
E 0 0 2 0 0 2

Allocation Request Available
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Example: 2/2

qSuppose C requests for one more resource Z.
qNow, A can run, making Available=[0,1,0].
qHowever, none of B, C, D and E can run.  

Therefore, B, C, D and E are deadlocked!

X Y Z X Y Z X Y Z
A 0 1 0 0 0 0 0 0 0
B 2 0 0 2 0 2
C 3 0 3 0 0 1
D 2 1 1 1 0 0
E 0 0 2 0 0 2

Allocation Request Available
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The Use of a 
Detection Algorithm

qFrequency
ØIf deadlocks occur frequently, the detection 

algorithm should be invoked frequently.
ØOnce per hour or whenever CPU utilization 

becomes low (i.e., below 40%).  Low CPU 
utilization usually means more processes are 
waiting.
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How to Recover: 1/3
qWhen a detection algorithm determines a 

deadlock has occurred, the algorithm may 
inform the system administrator to deal with it.  
Of, allow the system to recover from a deadlock.

qThere are two options.  
vProcess Termination
vResource Preemption

qThese two options are not mutually exclusive (i.e., 
can have both if needed).
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Process Termination: 2/3

qAbort all deadlocked processes
qAbort one process at a time until the deadlock cycle 

is eliminated
qProblems:

ØAborting a process may not be easy.  What if a 
process is updating or printing a large file?  The 
system must find some way to maintain the states 
of the files and printer before they can be reused.

ØTermination may be determined by the 
priority/importance of a process.
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Resource Preemption: 3/3
qSelecting a victim: which resources and which 

processes are to be preempted?
qRollback:  If we preempt a resource from a 

process, what should be done with that process?
ØTotal Rollback: abort the process and restart it
ØPartial Rollback:  rollback the process only as far as 

necessary to break the deadlock.
qStarvation: We cannot always pick the same 

process as a victim.  Some limit must be set.



Resource Allocation Graph: 1/5

qDeadlock detection may also be graphical.
qSuppose we have m resource types, R1, R2, …, Rm, 

resource type Ri has Wi instances.
qSuppose we have n processes, P1, P2, …, Pn, each process 

is represented by a circular node. 
qEach resource is represented by a rectangular node in 

which the number of “dots” indicate the number of 
instances.

q If process Pi makes a request of resource Rj, draw a 
directed edge from Pi to Rj.

q If process Pi receives a resource of resource Rj, draw a 
directed edge from a dot of Rj to Pi.
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Resource Allocation Graph: 2/5

qThe right diagram has 3 processes 
P1, P2 and P3, and 3 types of 
resource R1, R2 and R3.

qProcess P1 has a resource of R2 and 
requests a resource of R1.

qProcess P2 has a resource of R1 and 
a resource of R2, and requests a 
resource of R3.

qProcess P3 has a resource of R3.
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Resource Allocation Graph: 3/5

qThe resource allocation graph is a directed graph.
qIf there is no directed cycle, the 

allocation has no deadlock.  Why? Your 
homework problem.  Consider the four 
necessary conditions.

qIf a resource allocation graph has a directed cycle, 
ØIf only one instance per resource type, we have a 

deadlock
ØIf several instances per resource type, there is a 

possibility of deadlock.
71



Resource Allocation Graph: 4/5

q The right diagram has a directed 
cycle.

q Process P2 has an instance of R2, 
requests an instance of R3.  But, R3’s 
only instance is allocated to P3.

q P3 requests an instance of R2.
q Hence, we have a circular waiting 

situation and a deadlock.  Use the 
detection algorithm to justify this.
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P2 cannot run because its needed resource is held by P3.

P3 cannot run because its needed resource is held by P1 or P2.

Can P1 run and release a resource of R2 needed by P3?
No, because R1 which is held by P2, is not available.



Resource Allocation Graph: 5/5

qBut, having a directed cycle 
does not always mean there is a 
deadlock.

qIn the right diagram, if P4
releases the instance it holds, P3
can have it.

qIn this case, P3 can have all the 
needed resources and run.

qThus, there is no deadlock even 
though there is a circular 
waiting.
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X



Examples: 1/5

q Because P4 has Request = [0,0] which is ≤ Available = 
[0,0], we can run P4.  After P4 finishes, it returns its 
Allocation = [0,1], making Available = [0,0] + [0,1] = 
[0,1].

q Now, we can run P3 because its Request = [0,1] ≤ 
current Available = [0,1].  After P3 finishes, the new 
Available = P3’s Allocation = [1,0] + current Available
[0,1] = [1,1].

q Now we can run P1 or P2.
q There is no deadlock even though there is a cycle.
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R1 R2 R1 R2 R1 R2

P1 0 1 1 0 0 0
P2 1 0 0 0
P3 1 0 0 1
P4 0 1 0 0

Allocation AvailableRequest

Running P4 frees a resource
needed by P3

Running P2 frees a resource
needed by P1

These two say the same thing



Examples: 2/5

0 1 0 0 0 0 1 0 1 0 0 0
1 0 0 0 0 0 0 0 1 1 0 0
0 0 1 0 0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 1 1 0 0 0 0 0 0

75

Allocation Request R5R0

R2

R1

R3

R4

P0

P1

P2

P3 P4

P0

P1

P2

P3

P4

R0 R1 R2 R3 R4 R5 R0 R1 R2 R3 R4 R5

q Available = [0,0,0,0,0,0]
q Because P4’s Request=[0,0,0,0,0,0] ≤ Available = [0,0,0,0,0,0],  run P4.
q After P4 finishes, Available = [0,0,0,0,0,0] + P4’s Allocation = [0,0,0,0,1,1] = [0,0,0,0,1,1].
q Now we can run P3 because P3’s Request = [0,0,0,0,1,0] ≤ Available = [0,0,0,0,1,1].
q After P3 finishes, Available = [0,0,0,0,1,1] + P3’s Allocation = [0,0,0,1,0,0] = [ 0,0,0,1,1,1].
q None of P0’s, P1’s and P2’s Request can be satisfied.
q Therefore, we have a deadlock.



Dining Philosophers, Again: 1/3
q In the dining philosophers problem, we have philosophers Pi and 

chopsticks Cj.
q Initially, Philosopher Pi requests chopstick Ci .  The following is 

the initial configuration.
q Use the detection algorithm to allocate a single chopstick.
q Suppose philosopher Pj gets Cj, then Pj requests Cj+1.
q Then, new Allocation[ ] and Request[ ] are obtained.
q Use the detection algorithm to continue chopsticks allocation.
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C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

P1 1
P2 1
P3 1
P4 1
P5 1

Allocation Request



Dining Philosophers, Again: 2/3

qn chopsticks in the middle of table 
qn dining philosophers, each can take one chopstick 

at a time
qCan deadlock occur?
qUse deadlock detection algorithm AND resource 

allocation graph to illustrates this possible 
deadlock.
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Dining Philosophers, Again: 3/3

qn chopsticks in the middle of the table
qn philosophers, each takes one chopstick at a time
qPhilosophers need k chopsticks to eat, k > 1
qCan deadlock occur?
qUse deadlock detection algorithm AND resource 

allocation graph to illustrates this possible 
deadlock.
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The End


