Network Analyzer

- Network troubleshooting
- Monitoring bandwidth usage
- Defend against the security threats
- Programming troubleshooting
- Learn/Examine Network protocol
Tools

- SpyNet
- CommView
- Ethereal
- Snoop
- Tcpdump
- Snort
- TDIMON
- Sniffer Distributed
TCPDUMP

- Refer to book “Open Source Network Administration”
 - Online sample chapter:
 http://www.phptr.com/articles/article.asp?p=170902&seqNum=4

- Some tools are not based directly on the data being transmitted on a network, but information related to that data.
 - For example, network bandwidth values
 - System logs on network equipment

- Sometimes needs to examine the packets themselves.
 - Diagnose some particularly tricky network problems

- Widely used open source tool for directly analyzing packets: tcpdump
 - http://www.tcpdump.org/
Caution

Before you use tcpdump or other analyzer:
- Will be able to see some private data
- Consult/research Legal implication first
- Respect the privacy of other users
What Tcpdump can do for you

- View the entire data portion of an Ethernet frame or other link layer protocol
 - An IP packet
 - An ARP packet
 - Or any protocol at a higher layer than Ethernet.

- Very useful
 - Tcpdump is to a network administrator like a microscope to a biologist.
 - Give a very clear picture of a specific part of your network
 - Can be used when the problem is simply that something is not working properly.
What tcpdump can do for you?

- **Case 1**: Web browser can not load pages from a server - it hangs.
 - Problem with client? Server? Or between?
 - Run tcpdump while loading
 - Watch every stage to see the following
 - DNS query
 - HTTP request to server
 - Server respond

- **Case 2**: help debug denial of service attacks.
 - Tcp show the source address, destination address, type of traffic, etc.
 - Check the packet contents to learn more about the nature of the attack.
Limitations of Tcpdump

- Limited by network hardware
 - For example
 - Ethernet card will discard packets with an invalid checksum.
 - Tcpdump is not helpful for detecting this kind of broken packet on your network - need specialized hardware.
 - Tcpdump is showing you only what the data is, not what it ought to be -- has no ability to report “IP address is forged in the packet”
Installing Tcpdump

- Already installed?
 - /usr/sbin/tcpdump
 - /usr/local/bin/tcpdump
 - Solaris comes with “snoop”

- Download software from http://www.tcpdump.org/
 - Down pcap library

Running as root

- Enable promiscuous mode
 - How?
 - Capture packets that are not addressed to the interface itself
 - Possible degraded performance

- Command line options
 - `-n`:
 - By default tcpdump performs DNS query to lookup hostname associated with an IP address and uses the hostname in the output. Look nicer, cause performance problem.
 - Use `-n` to disable it.
More command line options

- **-s snaplen**
 - Capture the first 68 bytes by default, enough to grab the header, not the entire packet.
 - See more data by setting snaplen to be long.
 - For ethernet, how long we can set snaplen?

- **-x**
 - Print the packet contents in hexadecimal notation.

- **-v and -vv**
 - Print more info about protocols

- **-q**
 - Print less info

- **-i interface**
 - Which one to listen on
More command line options

- **-e**
 - Include Ethernet header

- **-l**
 - Force tcpdump output to be line buffered.
 - `#tcpdump -l | tee tcpdump.out`

- **-w file and -r**
 - Store the data in binary format and then play back as it were being read from the wire using -r
Filters

- Following the command line options is the expression to dictate exactly which packets should be captured and which should be ignored.

- Primitive
 - **src, dst**
 - # tcpdump src client.example.com and dst server.example.com
 - Only those packet from “src” and to “dst”
 - **host**
 - # tcpdump host client.example.com
 - Can be combined with and, or and not with parentheses.
 - # tcpdump “host client and not (port telnet or port domain)”
Some Primitives

<table>
<thead>
<tr>
<th>Primitive</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>src addr</td>
<td>Source IP address matches addr</td>
</tr>
<tr>
<td>dst addr</td>
<td>Destination IP address matches addr</td>
</tr>
<tr>
<td>host addr</td>
<td>Source or destination IP address matches addr</td>
</tr>
<tr>
<td>ether <src/dst/host> addr</td>
<td>Ethernet address matches addr</td>
</tr>
<tr>
<td>[src/dst] net net</td>
<td>IP address is on network net</td>
</tr>
<tr>
<td>net net</td>
<td>Source or destination IP addr is on network net</td>
</tr>
<tr>
<td>net net mask mask</td>
<td>As above but network range defined by mask</td>
</tr>
<tr>
<td>[src/dst] port port</td>
<td>Port is port</td>
</tr>
<tr>
<td>less octets</td>
<td>Packet size is less then or equal to octets</td>
</tr>
<tr>
<td>greater octets</td>
<td>Packet size is greater than or equal to octets</td>
</tr>
<tr>
<td>icmp</td>
<td>Packet is an ICMP packet</td>
</tr>
<tr>
<td>tcp</td>
<td>Packet is an TCP packet</td>
</tr>
<tr>
<td>udp</td>
<td>Packet is an udp packet</td>
</tr>
<tr>
<td>ip</td>
<td>Packet is an IP packet</td>
</tr>
<tr>
<td>arp</td>
<td>Packet is an ARP packet</td>
</tr>
<tr>
<td>broadcast</td>
<td>Packet is addresses to a broadcast address</td>
</tr>
</tbody>
</table>
Examples

- Use option and primitive, put together a number of useful tcpdump command line.
 - Display quick info on all traffic to/from a host
 - `#tcpdump -q host broken.example.com`
 - View entire packet for all bootp traffic
 - `# tcpdump -xs 1500 port bootps or port bootpc`
 - To gather ssh connections and leave tcpdump running for a long time to client.example.com
 - `# tcpdump -nxs 1500 -w tcpdump.data port 22 and host client`
Understanding the output

- See Unix manpage
- UDP

 \textit{Time source > destination: udp datalen}

 \textit{Example:}

 13:45:20.364930 10.7.15.82.2103 > 10.18.0.100.47028: udp 342 (DF)

- TCP

 \textit{Time source > dest flag sequence [ack ack] win window [urgent] [options]}

 \textit{Example:}

 ...10.7.21.70.80 > 10.18.0.100.34639: P 1461:2921(1460) ack 973 win 63268 (DF)
Viewing Packet Data

- `-x` print out entire packets in hexadecimal.
- Use an additional program to print character representations of each byte.

```perl
#!/usr/bin/perl
#
# This code is hereby placed in the public domain by its author,
# Marc Horowitz. If you use it, it would be polite if you left
# my name on it, but there's no requirement.
$| = 1;
while(<>) {
  if (/\^\s/) {
    ($nospc = _) =~ s/\s+//g;
    ($spc = $nospc) =~ s/(....)/$1 /g;
    ($bin = pack("H*",$nospc)) =~ tr/\000-\037/./;
    printf("%16s%-45s\n",",",$spc,$bin);
  } else {
    print;
  }
}
```
```bash
Linux# tcpdump -xls 1500 | ./tcpdump-data-filter.pl

tcpdump: listening on eth0

20:11:35.686269 host.example.com.53454 > c.gtld-servers.net.dom...
   4500 003d 9f2a 4000 ff11 add6 0a12 0064      E..=.*@...........d
   c01a 5c1e d0ce 0035 0029 3674 8930 0000      ..\....5.)6t.0..
   0001 0000 0000 0000 0364 6e73 0765 7861      ...........dns.exa
   6d70 6c65 0363 0000 0100 01      mple.com.....

20:11:35.740531 host.example.com.34243 > web.example.com.80: P ...
   4500 03f4 a6f9 4000 4006 5641 0a12 0064      E.....@.@.VA...d
   0a07 154d 85c3 0050 f0b0 2504 41bc a72f      ...M...P..%.A../
   5018 60f4 3db0 0000 4745 5420 2f20 4854      P.'.=...GET / HT
   5450 2f31 2e30 0d0a 486f 7374 3a20 7765      TP/1.0..Host: we

...
Seeing It All

- Before modern network switch, it was easy to view all of the traffic on an Ethernet network.

- On a switched network, what will you see?
  
  tcpdump will be able to view only:
  
  - Traffic destined to your host
  - Traffic originated from your host
  - Broadcast traffic
  - Small random amounts of traffic for other hosts.
Possible ways

- Connect the host in question and your monitoring host to a true repeater.
Possible ways

- Configure network hardware to forward the packets you are interested in to a port you can monitor them from.
  - Not all hardware support.
  - Cisco switch is capable of doing so.
Debugging with Tcpdump

- Packet flooding

Linux# tcpdump -n

17:36:16.265220 10.255.255.27.1221 > 10.18.0.100.9995: udp 1168 (DF)
17:36:16.269171 10.255.255.27.1221 > 10.18.0.100.9995: udp 1168 (DF)
17:36:16.273130 10.255.255.23.1221 > 10.18.0.100.9995: udp 1168 (DF)
17:36:16.285228 10.255.255.27.1221 > 10.18.0.100.9995: udp 1168 (DF)
17:36:16.302173 10.255.255.27.1221 > 10.18.0.100.9995: udp 1168 (DF)
17:36:16.319372 10.255.255.27.1221 > 10.18.0.100.9995: udp 1168 (DF)
17:36:16.334600 10.7.15.65.7000 > 10.18.1.140.7001: rx ack (66) (DF)
17:36:16.334975 10.7.15.65.7000 > 10.18.1.140.7001: rx data (36) (DF)
17:36:16.336606 10.255.255.27.1221 > 10.18.0.100.9995: udp 1168 (DF)
17:36:16.336623 10.7.1.70.7000 > 10.18.1.140.7001: rx ack (66) (DF)
17:36:16.336939 10.7.1.70.7000 > 10.18.1.140.7001: rx data (36) (DF)
17:36:16.352253 10.255.255.27.1221 > 10.18.0.100.9995: udp 1168 (DF)
17:36:16.356199 10.255.255.27.1221 > 10.18.0.100.9995: udp 1168 (DF)
17:36:16.396921 10.255.255.27.1221 > 10.18.0.100.9995: udp 1168 (DF)
Debugging with Tcpdump

- Webbrowser hangs
  - Step 1. Start tcpdump to monitor port 80
    \#tcpdump host client.example.com and port 80
    - No traffic, so web server is not a problem
  - Step 2. Start tcpdump for all
    \#tcpdump host client.example.com
    - Only DNS request, no response.

Linux\# tcpdump -xls 1500 host client | ./tcpdump-data-filter.pl
18:14:12.842409 brokenclient.example.com.55313 > dns.example.co...
  4500 0048 058b 4000 ff11 9d80 0a12 0064      E..H..@........d
  0a05 061e d811 0035 0034 8a44 e4ca 0010      .......5.4.D....
  0001 0000 0000 0001 0377 7777 0765 7861      ........www.exa
  6d70 6c65 0363 6f6d 0000 0f00 0100 0029      mple.com........)
  0800 0000 8000 0000
Graphs

- One of Network Administrator’s important tasks: Monitor bandwidth, network usage
  - Current status
  - Trends

- Check out this web page
  http://bloodshot.tc.mtu.edu/performance/reports.php
MRTG

- MRTG stands for Multi Router Traffic Grapher
  - Produce web pages that display graphs of bandwidth use on network links on daily, weekly, monthly and yearly scales.
  - Rely on SNMP
  - MRTG is based on Perl and C and works under UNIX and Windows NT.
  - Free software released under GNU General Public License.

- See graphs created from MRTG
  http://www.stat.ee.ethz.ch/mrtg/
MRTG

- MRTG relies on SNMP (Simple Network Management Protocol)
  - Send SNMP requests regularly
  - Stores the response in a specialized data format

- The graphs are created in Portable Network Graphics (PNG) format
  - Can be included in the web page
  - Can be used in other applications.
What MRTG can help you Do

- **View the traffic pattern**
  - studying the trend
  - Plan capacity needs for future

- **Quickly determine abnormal traffic load**
  - Use graphs of history
    - Sudden change might count for an operational problem
      - ? A denial-of-service attack
Amount of traffic sent INTO from an interface

Amount of traffic sent OUT from an interface
What MRTG can Help you do

- MRTG is most often used to collect data from router interfaces
- Can also collect traffic data from switches or servers
- It can be configured to collect any statistical data that a device makes available via SNMP.
Installing MRTG

- Available at http://www.mrtg.org
- It requires:
  - Perl 5.005 or greater
  - The GD library
  - The PNG library
  - The zlib library
- MRTG comes with its own SNMP implementation.
- Download the source, follow the doc to
  - Extract
  - Run configure, make and make install, etc
PNG library and GD library

- **PNG**
  - Source is available at http://www.libpng.org/pub/png/libpng.html
  - Follow the document to compile and install library

- **GD**
  - Available at http://www.boutebell.com/gd
  - Follow the document to configure env and install
Configuring MRTG

- **Configuration File**
  - Include the community names for your devices
  - Should not be public readable
  - Specify where to put data
    - Under a Web Server
    - Publicly readable
  - Use utility cfgmaker with lots of options to create the configuration file
    - Global options
    - Snmp options
    - Monitored device and community name
    - Use IP as directory name in data area.
    - ... ...
More about MRTG

- Use indexmaker program to organize the PNG file and HTML file

- Setting up regular data gathering
  - Crontab to run mrtg utility
  - Run mrtg as a daemon with options

- Using MRTG
  - Does data make sense?
  - Do not trust it blindly.
  - Bugs?
  - Deal with special case
    - Could not retrieve or store data for a short period time
    - Data value will be flat
NETFLOW

- NETFLOW Available on some routers, such as Cisco, Juniper, etc.
  - Collecting data such as:
    - source and destination IP addresses
    - Source and destination protocol port numbers
    - Number of packets transmitted
    - Number of bytes transmitted,
    - Etc
  - View the data on the router
  - Forward the data to another host

- Open source tool: Flow-Tools package available from Ohio State University.
What NetFlow can help you do

- Image your network is hit by a denial of service attack.
  - You noticed degraded network connectivity
  - MRTG show dramatic rise in traffic levels
  - Interface counter on router indicate a very high rate of traffic
  - Turning on NetFlow on the router
    - Examine the traffic in realtime
    - Notice a large number of connections from a single host, all the sequentially increasing IP addresses inside your network - scanning?
    - Block the traffic at the border router?
How NetFlow works

- Based on the idea of a flow of network traffic.
  - Flow is one full network conversation from the start to the end.
  - Every flow has a unique set of properties:
    - Source IP address
    - Destination IP address
    - Source port
    - Destination port
    - IP protocol number
    - Type of service field
    - Input Interface
  - For example,
    - one tcp connection to a web page is a flow
    - Scanning destination IP addresses will generate many flows.
NetFlow

- Flow is unidirectional.
  - Routers report flows for traffic that enters an interface, not traffic that leaves an interface.

- How to determine what constitutes one sessions’ worth of traffic and when a particular flow ends?
  - For TCP is relatively easy. Why?
  - For UDP, ICMP, etc, it is more difficult. The router must use heuristics to decide when the flow is complete.
NetFlow

- Router has limited memory for holding data
- It removes flows from cache occasionally
- Router will expire flow if
  - The end of a tcp connection is found
  - No traffic has been present in the flow for 15 seconds
  - The flow has been running for over 30 minutes
  - The table of flows in the router is filled.
- One real flow could become multiple flows due to router expiration policy.
Exporting NetFlow Data

- Routers can export NetFlow data
  - To a server, called flow collector, then to be processed by administrator
  - As UDP packets to an IP address
    - Data may be lost
    - Only one IP address. Flow collector has to forward to other flow collector if you wish.
    - Router address is not in the packets
NetFlow Versions

Version 1, each flow contains:

- Source and destination IP address
- Source and destination port address
- Next hop router address
- Input and output interface number
- Number of packets and bytes sent
- sysUpTime when flow began and ended
- IP protocol number and type of service
- Logical OR of all TCP flags seen.
NetFlow

- **Version 5**
  - Include AS numbers
  - Sequence numbers, which allows checking for lost packets.

- **Version 7**
  - On Cisco Catalyst 5000, require a special NetFlow Feature Card to perform NetFlow accounting

- **Version 8**
  - Router-based NetFlow aggregation
  - Reduce the data send to collectors

- **Version 9**
  - Template-based scheme for reporting flows
Installing Flow-tools

- OSU Flow-tools is available from http://www.net.ohio-state.edu/software
  - Download
  - Extract
  - Build
  - Install

- Configuring NetFlow on the router
  - Configure router to export flows
  - Configure NetFlow version number for router export to use
Using Flow-tools

- Capturing Flows
  - Flow-capture: receive and store
  - Flow-receive: receive and send to standard output.
  - Source/destination and port number can be used as criteria to receive the NetFlow info.
    * For example
      
      ```
 #flow-receive 0/0/9995 | flow-print
 0/0/9995 has the format of localip/remoteip/port
      ```
    * Note: this is related to communication of sending and collecting flows, not the addresses contained within the flows.
Using Flow-tools

- **Flow-capture**
  - By default:
    - Create a new file every 15 minutes
    - Create a nested directory structures so that each year, month and day of files has a separate directory
    - Never remote files
    - Compress files
  - Default settings can be changed from command line
    - Set up a maximum size that data files may be use in total
    - Change the directory hierarchical structure
    - File rotation rate
    - Compression rate
    - Remote client
Using Flow-tools

- Viewing the flow data
  - Flow-print
    - ASCII
    - Predefined reporting format available
  - Flow-report
    - Perform some statistical analysis
    - Produce the data in a way to be able to feed other tool
    - Require a configuration file
  - Flow-stat
    - Does not require a configuration file, has predefined formats
    - Similar to flow-report
  - Flow-dscan
    - Attempts to detect unusual network traffic like port scanning and host scanning.
Using Flow-tools

- Manipulating Flow Data
  - Flow-cat and flow-merge
  - Flow-split
  - Flow-expire
  - Flow-header
  - Flow-fanout
Service Monitoring

Network administrators has to deal with something that spontaneously stops working.

- Network link fails
- Web server refuses connections
- Switch stop passing traffic
- ...
- ...

Network administrators need to be notified of failures when they occur. How?
Service Monitoring

- Monitoring or polling software
  - Send out probes at regular intervals to test
    - Network connectivity
      - Ping switch, router, hosts
    - Service functionality
      - Attempt to retrieve web page
      - Make snmp request
      - Perform other service level testing … …
  - Has to be intelligent to report the root problem.
    - For example
      Polling server $\rightarrow$ switch A $\rightarrow$ switch B $\rightarrow$ many many hosts
      If switch B fails, should Network Administrator receive message regarding each hosts connected to switch B?
  - Should not degrade performance too much - polling intervals
Service Monitoring

What Service Monitoring Can Help you do?

- Give you early warning of failures
  - Proactive management, not fire fighting
  - Fix a problem before it becomes an even larger problem
    - For example,
      » If the redundancy part failed without being noticed, what will happen when the primary part fails?

- Help you determine where is your network a problem resides.
  - Depends on user report and waits for user to complain is too late sometime.

- It is always in your best interest to know about problems before either your customers or your superiors do.
Open source software

- **Sysmon**
  - Available at [http://www.sysmon.org](http://www.sysmon.org)
  - Simple program, easy to configure and get running
  - Does not have many advanced features
  - Works for a small to medium-sized network

- **Nagios**
  - Available at [http://www.nagios.org/](http://www.nagios.org/)
  - Is a better tool for large networks
  - Complicated program
  - Includes advanced functionalities.
Sysmon

- Installing Sysmon
  - Where to place the server?
    - Use a stable server
    - In a stable place, near the network core - you don’t put sysmon on a-tend-to-fail place.

- How to install Sysmon
  - Download, unpack and build the software

- Using Sysmon
  - Create a configuration file
  - Control daemon
    - Starting the sysmon Daemon
    - Stopping the Sysmon Daemon
    - Pausing Sysmon
    - Reloading the configuration
Sysmon

- Configuring Sysmon
  - Configuration is made up a list of objects to be monitored.
    - IP address of the device to be tested
    - The kind of test that should be performed
    - Any objects the device depends on

For example:
Object router1 {
    ip "192.0.2.5";
    type ping;
    desc "Router1";
    dep "server"
    contact admin@example.com
};
Sysmon

- Setting the IP address
  - Really contain either hostname or IP
  - If ipaddress, then sysmon is not depend on DNS
  - If many piecec to be monitored, using host name is easier

- Setting the Test Type
  - Ping  standard ping test
  - Pop3  working POP3 server  username,passwprd
  - Tcp   generic listening TCP port  port
  - Udp   generic listening UDP port  port
  - Radius working Radius server  username,password,secret
  - nntp  listening news server
  - Smtp  listening mail server
  - Imap  listening IMAP server
  - X500  listening x500 directory server
  - www  listening web server  url, urltext
Sysmon

Example

Objject web-server {
  ip www.example.com;
  type www;
  desc "Main Web Server";
  dep "Router1";
  url http://www.example.com/;
  urltext "<TITLE>";
  contact admin@example.com;
}
Sysmon

- Specifying Dependencies
  Object server1 {
    ip "server1.example.com"
    type ping;
    desc "Server 1";
    dep "Router1-servernet";
    dep "Router2-servernet";
    contact admin@example.com;
  };

Sysmon

Using the spawn options

- Email is not always the best way to notify an administrator of a critical problem.
  - Email is not guaranteed to be a timely service
  - What if mail system itself is unavailable?

- Send a direct message to a page or cell phone is better.
  - Sysmon does not have its own support for sending pages
  - Use spawn allows to hook a program to execute with arguments.

  - User the replacement variables to create as detailed as you would like:
    - %m local host name
    - %s service
    - %p port number (numeric)
    - %T current Time hh:mm:ss
Sysmon

- **Global options**
  - **The status file**
    - Sysmon daemon periodically writes a file with the status of services that it is monitoring.
    - **Configurable parameters:**
      - File type: html or text
        » Change the color scheme for html format
      - Write time interval
      - View both up and down services

  - **Configure the header of mail to include**
    - From
    - Subject
Sysmon

More global options

- Test queuing options - control how Sysmon processes service tests and notifications.
  - How many tests a service must fail before a notification message is sent.
    - Numfailures
  - How long it waits to start another test after the previous one finishes.
    - Queuetime
  - How many test Sysmon can run simultaneously
    - Maxqueued
  - How frequently should repeated messages been sent
    - pageinterval
**Sysmon**

- **Using variables**
  - If some value, like email address, is used many times, define a variable for it and reference it using $var$

- **Using Includes**
  - Break the configuration down into smaller files
    - One for web servers
    - One for ping tests
    - ... ...

- **Maintaining Sysmon**
  - Keep configuration accurate - toughest
  - Otherwise, it became useless for new changes or “cried wolf” for old failures
Nagios

- Open source: http://www.nagios.org

- Major advantages
  - Escalation
    - Email when failed first time
    - Page if happened again
    - ...
  - Configuration templates
    - Only configure the difference
  - Monitoring time periods
    - During work hour
    - Scheduled down time - do you want to be paged in the middle of night when somebody else is upgrading a piece of equipment?
  - Modular test plugins
    - Each plugin is simply an external program that test a service
    - It is easy to write your own tests to complement the suite of tests
Nagios

- Passive tests
  - Some information can not be sent to the monitoring server by means of the server requesting of the data
    - SNMP traps
- Host and contact groups
  - Easier to change configuration for a large, similar set of devices all at once.
- Flap detection
  - Test repeated fails and succeeds - flapping
  - Automatically disable notification until the flapping has stopped.
- Optional dependencies
Nagios

- **Downside**
  - Much more complicated program than Sysmon
  - Take a significant amount of time to install and configure
    - Sysmon can be setup in an afternoon
    - Magios may take several days or longer
    - HP NNM may take months
Summary

- Package Analyzer
  - TCPDUMP
- Bandwidth Grapher
  - MRTG
- Router Traffic monitoring
  - NETFLOW
- Service Monitoring
  - SYSMON

Next
- SNMP
  - Enterprise level network management solution
  - HP NNM