
An Authentication Framework for Hierarchical Ad Hoc
Sensor Networks

Mathias Bohge
∗

Wireless Information Network Laboratory
(WINLAB)

Rutgers, The State University of New Jersey
73 Brett Rd.

Piscataway, NJ 08854

Mathias@Bohge.de

Wade Trappe
Wireless Information Network Laboratory

(WINLAB)
Rutgers, The State University of New Jersey

73 Brett Rd.
Piscataway, NJ 08854

trappe@winlab.rutgers.edu

ABSTRACT
Recent results indicate scalability problems for flat ad hoc
networks. To address the issue of scalability, self-organizing
hierarchical ad hoc architectures are being investigated. In
this paper, we explore the task of providing data and en-
tity authentication for hierarchical ad hoc sensor networks.
Our sensor network consists of three tiers of devices with
varying levels of computational and communication capabil-
ities. Our lowest tier consists of compute-constrained sen-
sors that are unable to perform public key cryptography. To
address this resource constraint, we present a new type of
certificate, called a TESLA certificate, that can be used by
low-powered nodes to perform entity authentication. Our
framework authenticates incoming nodes, maintains trust
relationships during topology changes through an efficient
handoff scheme, and provides data origin authentication for
sensor data. Further, our framework assigns authentication
tasks to nodes according to their computational resources,
with resource-abundant access points performing digital sig-
natures and maintaining most of the security parameters.
We conclude by providing an initial performance evaluation
and security analysis for our framework.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: [distributed
networks, network communications]

General Terms
Security

∗The author is currently with the Telecommunication Net-
works Group at the Technical University of Berlin, Sekr
FT5-2, Einsteinufer 25, 10587 Berlin, Germany.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSE’03, September 19, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-769-9/03/0009 ...$5.00.

Keywords
Authentication, Ad hoc networks, TESLA, Handoff

1. INTRODUCTION
Remote sensing applications are becoming an increasingly

important area for research and development due to the crit-
ical need for applications that will perform environmental
monitoring, provide security assurance, assist in healthcare
services and facilitate factory automation. In remote sens-
ing scenarios, one or more applications are connected to a
sensor network through a communication network. The sen-
sors in the sensor network make measurements, such as local
temperature or barometric pressure, and communicate this
data with the appropriate application via the network. Pro-
viding security mechanisms for sensor networks is of critical
importance since sensors will ultimately be used to assist
in our daily lives. The authentication of the data source as
well as the data are critical concerns since adversaries might
attempt to capture sensors and tamper with sensor data.
Traditional authentication frameworks based on public key
cryptography are not suitable for sensor networks since the
sensor network will ultimately consist of small, low-powered
devices that are mobile. The limited computational and
storage resources available to sensors necessitates alterna-
tives to authentication based on public key certificates.

Recently, a set of security protocols for sensor networks,
known as SPINS, has been proposed [1]. SPINS addresses
authentication on limited resource sensor networks by in-
troducing two security protocols that rely on the presence
of a more powerful basestation and an initial shared se-
cret between the basestation and each participating sen-
sor node: SNEP and µTESLA. SNEP is a simple protocol
that provides data confidentiality, two-party data authenti-
cation, and evidence of data freshness using only symmet-
ric keys and counters. µTESLA is a modified version of
the TESLA protocol, which performs bootstrapping with-
out using a public key infrastructure (PKI) and discloses
one key each epoch independently of the packet rate to pro-
vide broadcast authentication. Another work that focused
on authentication for ad hoc networks was presented in [2].
In this paper, a distributed light-weight model for authenti-
cation was presented that involves network nodes requesting
trust references from neighboring nodes in order to establish
the trust relationships needed for network authentication.

79

Each entity maintains a list of trusted entities, and using
these lists trusted communication paths between two arbi-
trary entities can be derived. One drawback of this method,
however, is its scalability. For large networks, the size of
the trust tables can become prohibitive. Another work on
authentication for ad hoc networks that addressed the is-
sue of scalability was presented in [3], which introduced the
use of cluster heads to reduce the amount of control packets
needed. In this work, the network is divided into cluster
regions, and cluster heads are elected from the regular net-
work nodes within each cluster. Authentication is provided
by using a public key infrastructure that, unfortunately, is
not suitable for small sensor devices.

These methods focus on ad hoc networks employing a flat
topology. However, ad hoc networks have been recently
shown to have capacity limitations, and one approach to
address this drawback is to employ a hierarchical ad hoc
network. In this paper we will further explore the advan-
tages of hierarchical ad hoc networks, particularly focusing
on the advantages of the hierarchical ad hoc sensor network
for performing authentication when compared with flat ad
hoc networks. Authentication in hierarchical ad hoc net-
works has been essentially untouched, and we are aware of
only one work in this direction [4, 5], which focused on a
military environment. The security of their work is based
largely on the assumption that the access points, which cor-
responded to unmanned aerial vehicles, are unable to be
compromised. This is an assumption that does not hold in
non-military applications, and therefore we consider a three-
tier hierarchical ad hoc network that is suitable for more
general remote sensing applications running on the Internet.
We develop an authentication framework for our three-tier
hierarchical sensor network that addresses the hardware re-
sources of the three-tier network, and employs cryptographic
primitives that are appropriate for each type of node.

1.1 Hierarchical Sensor Network
Mobile ad hoc networking is the ideal architecture for the

wireless sensor network since ad hoc networking provides a
ubiquitous communication infrastructure capable of grow-
ing and adjusting to sensor dynamics. However, despite the
popularity of flat ad hoc networks for sensor applications,
recent information theoretic studies have indicated the lim-
itations of the flat topology [6].

Recently, hierarchical ad hoc networks have been pro-
posed as an alternative topology to flat ad hoc topologies.
Initial measurements indicate that the hierarchical approach
has better performance than flat ad hoc network [7, 8]. In
[8], a three-tier self-organizing hierarchical ad hoc network
is proposed to improve the scalability of ad hoc wireless
networks. A modified hierarchical dynamic source routing
(DSR) protocol [9] is studied. In particular, they observed,
when using the same amount of sensor nodes in a given
coverage area for flat and hierarchical topologies, that the
system throughput capacity increases, while system delay
decreases. The main reason for these improvements is the
reduced number of hops since most sensor data are destined
for the Internet, which is reachable in a few hops in the
hierarchical approach.

In this paper, we will use the three-tier ad hoc network
topology of [8]. This architecture, depicted in Fig. 1, con-
sists of three classes of wireless devices: (B) high-power ac-
cess points that route packets received via radio links to the

Figure 1: Three-tier hierarchical ad hoc sensor net-
work.

wired infrastructure, (C) mobile medium-powered forward-
ing nodes that relay information from sensor nodes to ac-
cess points, and (D) low-powered mobile sensor nodes that
have limited computing capability. We have depicted an
Internet-based application (A) that is connected to the sen-
sor network through the access points. This network is ideal
for sensor-driven applications, where traffic flows from the
sensors to Internet-based applications.

There are several key points that differentiate the three-
tier hierarchical sensor network from conventional ad hoc
sensor networks:
1. Varying levels of computational power within the sensor
network : Conventional ad hoc sensor networks assume all
nodes are created equal. The presence of large numbers of
unreliable and energy-constrained sensors makes the task of
energy-efficient communication and security protocols essen-
tial to the operation of a flat sensor network. However, the
three-tier sensor network consists of three types of devices
with different degrees of computational capabilities.
2. Sensors do not communicate with each other : The pur-
pose behind a remote sensor network is to feed data to the
application, which will make decisions based on the obser-
vations it receives. Sensor nodes route their packets via
higher-level nodes and it is therefore unnecessary for sensor
nodes to communicate and authenticate each other.
3. The forwarding node is a radio-relay : The purpose of
the forwarding node is to relay messages from the sensors
to the access points. Forwarding nodes have two wireless
interfaces, one that communicates with SNs, and one that
communicates with APs. They do not necessarily perform
measurements themselves.

2. TESLA AND TESLA CERTIFICATES
Today, the most widely used certification systems are PGP

[10] and X.509 [11]. Both rely on public key cryptogra-
phy, which makes them unsuitable for devices that are low-
powered, or computationally-constrained. These devices should
not have to verify an RSA-signature associated with a public
key certificate. Therefore, if we wish to have a certificate-
based authentication system for low-powered devices, we
need a certificate structure that does not employ public key
cryptography.

TESLA [12] is a broadcast authentication technique that

80

achieves asymmetric properties, despite using purely sym-
metric cryptographic functions (namely MACs [13]) and thus
enables low-powered nodes to perform source authentica-
tion. We now briefly review TESLA. TESLA divides time
into intervals of equal duration. Time slot n is assigned a
corresponding key tKn. For each packet generated during
time interval n, the sender appends a MAC that is created
using the secret key tKn. Each receiver buffers the packets,
without being able to authenticate them, until the sender
discloses the key tKn by broadcasting the corresponding
key-seed sn. Once sn is disclosed, anyone with sn can calcu-
late tKn and can pretend to be the sender by forging MACs.
Thus, the use of tKn for creating MACs is limited to time
interval n, and future time intervals use future keys. Fur-
ther, sn isn’t disclosed until d time slots later, where d is
governed by an estimate of the maximum network delay for
all recipients.

The keys tKn are derived from sn using a publicly avail-
able one-way function F ′. The sn are related to each other
via a reverse-time chain of one-way functions. To create the
chain of key-seeds, the sender chooses a terminal seed sl, and
generates sl−1 using a one-way function F . The remaining

seeds {s0, s1, · · · , sl} are derived via sl
F→ sl−1

F→ sl−2
F→

...
F→ s1

F→ s0. The sender uses the seed-chain in the oppo-
site direction (starting with seed s0) to derive the TESLA

keys by applying the one-way function F ′ via sn
F ′→ tKn.

When a user receives a packet, he first checks whether the
packet is fresh (i.e. it was sent in a timeslot whose TESLA-
key hasn’t been disclosed) or dated. The receiver discards all
dated packets and buffers only the fresh ones. Once the user
receives a TESLA-seed sn, he checks F (sn) = sn−1 to be
sure of sn’s authenticity. He derives tKn by tKn = F ′(sn),
and authenticates the packets that were sent in timeslot n.

The framework that we propose in this paper uses TESLA
for authentication of data broadcast by the application. Ad-
ditionally, TESLA is used to create TESLA certificates that
support entity authentication in the sensor node handoff
mechanism (cf. Section 7.2). In contrast to the original
TESLA, our TESLA clients (i.e. all network nodes besides
the forwarding nodes) are not bootstrapped using the public
key infrastructure, but by the application sending the ini-
tial TESLA key to each network node encrypted with the
appropriate shared key.

2.1 TESLA Certs
In Fig. 2, we present the entities involved in TESLA

certificates, as well as the steps involved in using TESLA
certificates. Much like conventional public key certificates,
we have a certificate authority (CA), who is responsible for
creating the certificates for entity B. A low-powered device,
depicted by D, will contact B to use B’s service.

The steps involved in TESLA certificates are:
1. The CA periodically issues TESLA certificates for B.
During time slot n, the certificate authority (CA) doesn’t
sign the TESLA-certificate with its private key, but uses the
non-disclosed TESLA key tKCAn to create a MAC that is
included in the certificate. B’s public key is replaced its
authentication key aKBn , which is encrypted by the CA
using the TESLA key tKCAn .

CertCAn(B) =

(IDB , {aKBn}tKCAn
, TSA, MACtKCAn

(...))

Figure 2: The steps involved in using TESLA cer-
tificates.

TSA is a timestamp addressing the certificate’s expiration
date. The certificate is sent to B along with the matching
authentication key aKBn :

CA → B :

(CertCAn(B), {aKBn}KCA,B , MACKCA,B (...)).

2. Sometime between time n and n + d, D contacts B re-
questing to use B’s service, D → B : (request).
3. Following the request in step 2, B must prove its identity
to node D. B sends an authentication packet, which consists
of the TESLA certificate and a MAC that was created using
B’s authentication key aKBn :

B → D : (CertCAn(B), MACaKBn
(request)).

Upon receiving the authentication packet, D measures the
freshness of the certificate by checking the timestamp of
CertCAn(B) to make sure that it arrived before time n + d,
when the CA announces tKCAn . If CertCAn(B) is fresh, D
buffers the authentication packet.
4. The CA discloses its TESLA key tKCAn at time n + d.
Upon receiving tKCAn , D checks the authenticity of the
TESLA certificate by checking MACtKCAn

, then it decrypts
B’s authentication key aKBn and checks MACaKBn

. User
D is able to certify the identity of B as long as it receives
the TESLA certificate CertCAn(B) before the CA revealed
the TESLA key TKCAn .

The lifetime of a TESLA-certificate is short. It depends
on the disclosure time of the TESLA key that the certificate
authority used when creating the MAC and encrypting the
subject’s authentication key. Choosing a key that will be
disclosed soon lowers the delay in the authentication process
at node D, but results in increased overhead when issuing
new certificates.

3. OVERVIEW OF THE AUTHENTICATION
FRAMEWORK

There are two primary goals for the framework: first, to
ensure that the data received by the application (A) is sent
by an approved sensor node (D); second, to verify that the

81

data hasn’t been modified on its way to the application. To
achieve these goals, an authentication service has to be real-
ized that authenticates incoming nodes, establishes shared
secrets among them and with the application, keeps track
of changes in the network topology and provides data origin
authentication for sensor node data.

As in every authentication service, the proposed frame-
work relies on the presence of initial trust. It is necessary to
get some trustworthy information about an incoming node
before it is allowed to join the network. Information that is
provided by the node is not trustworthy if it is not confirmed
by a trusted entity. Therefore, each node that wants to join
the network must have a personal initial certificate (iCert)
that is issued by the network’s trusted third party (TTP).
The TTP is nothing more than a reliable node that is able
to perform RSA signatures, whose public key is known to all
nodes of the network that are able to verify RSA-signatures.

When an access point B or a sensor node D wants to join
the network, the node presents its iCert, which eventually
will be checked by the application A (because of their role
as a radio relay, we don’t consider forwarding nodes here–
their role in the network includes authentication upon re-
quest). If the iCert is valid, A will establish a shared secret
KA,B (with B) or KA,D (with D), which will enable the new
node to access the network and communicate with the ap-
plication. Once the node is part of the network, its iCert
becomes less important. As long as B or D doesn’t switch
applications, the trust relationship with the application will
last. Instead, it needs a method to authenticate itself with
other network entities that are not the application, e.g. an
access point must be able to authenticate itself with a sensor
node and vice versa. The topology of the ad hoc network
may change frequently, and thus it is desirable for nodes to
perform this inter-node authentication on their own, in a
fast and flexible manner. The application A enables them
to do so by periodically issuing runtime certificates (cert)
for each access point and sensor node of the network. Since
the computationally weak sensor nodes are included in this
process, these certs can’t rely on RSA signatures. As men-
tioned in Section 2.1 a new type of certificate will be used.

Having this network of authenticated nodes and shared
secrets, we can use the trust relationships to provide a data
origin authentication service. A sensor node D that wants
to deliver data, creates a MAC using the secret key it shares
with the application and appends it to the data. The ap-
plication will use the MAC to verify the data’s origin. D
creates another MAC using the secret key it shares with its
gateway access point B, which provides access to the In-
ternet. B will use the MAC to perform access control, by
making sure that D is a valid part of the network before
forwarding D’s data. In case one or more forwarding nodes
are located between B and D, B will answer the challenge
that D includes in the data-packet to assure that the data
finally reaches B. While the challenge-response mechanism
can guarantee that the data arrives at the access point, it is
neither able to tell what happened to lost data nor to pro-
vide information about who dropped it. Since this method
is unable to identify the entities involved in the data deliv-
ery, we refer to this mode of data delivery the weak mode of
operation. However, if a sensor node wants to send sensitive
data or, for any other reason, wants each node along the
path to be authenticated before it actually starts sending
the data, it can choose to use the assured mode of data de-

livery, which will provide authenticated information about
those nodes at the cost of an overhead of message exchange
and shared secrets.

In building our authentication framework, we assume each
forwarding node and access point has an RSA-key-pair along
with its certificate. We also assume that they know the
TTP’s public key +KTTP . For reference, at the end of the
paper, we provide a summary of the notation we use in our
framework.

4. CERTIFICATES
Certificates are the major tool to build an entity authen-

tication service since they enable entities that don’t share a
secret key to establish a trust relationship. Our framework
distinguishes between initial and runtime certificates. While
each node needs an initial certificate to join the network, the
runtime certificates are periodically issued by the applica-
tion to during the network’s lifetime. The forwarding nodes
are an exception. A forwarding node needs a general certifi-
cate that is only used once a sensor node requests assured
service (cf. Algorithm 5). In this case, an access point B
checks the forwarding node’s certificate. Therefore, certifi-
cates based on RSA can be used for the forwarding node’s
certificate.

4.1 Initial Certs
The framework relies on certificates as a means of initial

trust. Each access point or sensor node that wants to join
the network must own a certificate (iCertTTP) issued by the
network’s trusted third party.

4.1.1 Access Point
We assume that the access point B is a device of high

computational power and battery resources. This enables B
to validate and perform RSA-signatures. Therefore, each ac-
cess point has an RSA public and private key pair (+KA,−KA)
and an X.509-certificate (iCertTTP) issued by the Trusted
Third Party TTP , binding this keypair to their identity.

4.1.2 Sensor Node
The sensor node D applies to the trusted third party for

its initial certificate (iCertTTP). This initial certificate is
tied to a certain application A that the sensor node plans
to connect to.

iCertTTP (D) =

(IDD, {iKD}+KA , TSTTP , SIGN−KT T P (...))

The TTP issues this iCert to the sensor node D along with
the unique key iKD. D uses this key to authenticate itself
against application A. Since D’s initialization key is en-
crypted with A’s public key, only A is able to obtain the key
from the certificate and proof A’s authenticity. If D plans
to connect to several applications D, it can apply for more
than one certificate.

4.2 Runtime Certs
The purpose of runtime certificates is to maintain authen-

ticity between the initial authenticated nodes during the
networks’s lifetime. As a result of the forwarding node and
sensor node mobility, shared keys become obsolete and new
keys have to be established. The runtime certificates use the
trust relationships between the application and the nodes of
the network to create new trust relationships among them.

82

4.2.1 Access Points
An access point runtime certificate must be readable by

each sensor node D. Therefore, RSA-based certificates can-
not be used. Instead, we will fall back on TESLA certs:

CertAn(B) =

(IDB , {aKBn}tKAn
, TSA, MACtKAn

(...)),

where aKBn is the access point’s authentication key for slot
n. B will use this certificate to authenticate itself with a
sensor node during handoff. The MACtKAn

(...) proves that
this certificate was issued by the application.

4.2.2 Sensor Nodes
The sensor node runtime certificates will be used by an

access point B to check D’s identity during handoff to es-
tablish a new shared secret. It contains D’s ID, a timestamp
TSA and D’s secret authentication key aKAP,D encrypted
with an ‘access point group key’ gKAP , that every access
point of the network gets during its authentication with the
application.

CertA(D) =

(IDD, {aKAP,D}gKAP , TSA, SIGN−KA(...))

The signature SIGN−KA(...) proves that this certificate is
issued by the application.

5. CERTIFICATE RENEWAL
During the lifetime of a network, trust relationships change.

Misbehaving nodes have to be identified and must not be al-
lowed to remain connected to the network. Therefore, we
need a certificate renewal mechanism.

5.1 Access Point
The application issues a new certificate for each connected

access point B after a certain period of time. In the begin-
ning of time slot n, A sends to B the new certificate:

A → B : (CertAn(B), {aKBn}KA,B , MACKA,B (...)),

where aKBn is B’s authentication key, which will prove
B’s identity to a sensor node D during handoff. Check-
ing MACKA,B , B can verify that this certificate was issued
by the application A. To decrease the number of certificates
that have to be issued, a certificate could contain several au-
thentication keys, each of them encrypted with the TESLA
key of a different time-slot, and the matching MACs at the
end. However, in this paper we concentrate on one key in
each certificate.

5.2 Sensor Node
The application issues a new certificate for each connected

sensor node D after a certain period of time. This period
of time can be much greater than the TESLA time slots
as the sensor node runtime certificates don’t depend on the
application’s TESLA keys.

A → D : ({CertA(D), aKAP,D}KA,D , MACKA,D (...)),

where aKA,D is the authentication key that D uses for sensor
node handoff.

Algorithm: Access Point Authentication

Result: Authenticity and Shared Secret KA,B

between Application A and Access Point B

1 B → A : (offer, SIGN−KB (offer), iCertTTP (B))

2 if (A accepts offer) then
if (SIGN−KB (offer) valid) then

A → B :
(ok, SIGN−KA(ok), {KA,B , gKAP }+KB)

else
A → B : (deny, SIGN−KA(deny))

end
else

A → B : (LoI, SIGN−KA(LoI))

end

Algorithm 1: Access Point Authentication Algorithm

6. ENTITY AUTHENTICATION

6.1 Access Point
An access point B isn’t a proper mobile device, as it fea-

tures a wired connection to the Internet and is installed at
a certain place for a certain purpose. In the case of a sensor
network the purpose is to provide Internet-access for sen-
sor nodes and with that a connection to their application.
There is a need for authentication of the access point be-
cause it will provide access control at the interface between
the application and the sensors. Once an access point B
is physically connected to the wired network, it will con-
tact its application A and send a service-offer. We assume
that B knows the address of A and A’s public key +KA.
B will sign the offer with its private key −KB and append
its certificate before sending the offer to the application A
(cf. Algorithm 1). If A accepts the offer, it will check the
signature with help of the certificate - otherwise it sends
a signed lack of interest(LoI)-message. If the validation
is successful it returns an accept-message including a shared
secret key KA,B and the ’access point group key’ gKAP (that
will be used in the sensor node handoff-scenario), encrypted
with the access point’s public key +KB and signed with its
private key −KA.

The application ↔ accesspoint authenticity as well as the
shared secret key KA,B are the basis for authenticity of the
entire network.

6.2 Forwarding Nodes
Forwarding nodes are mobile devices. They don’t feature

wired connections and are free to roam between different
access points or entire networks. In contrast to an access
point, a mobile node needs a more flexible authentication
mechanism to support its mobility. The forwarding node is
the only kind of device in the sensor network with two wire-
less network interfaces. Its task is to forward data packets
sent by sensor nodes, that can’t reach the access point di-
rectly or that can save energy by using the forwarding node
as an intermediate hop.

In the current approach, forwarding nodes only authenti-
cate themselves if a sensor node wants to send its data in
the assured mode (cf. Algorithm 5).

83

Algorithm: Sensor Node-Authentication at FN

Result : Authenticity+Shared Secret KB,D between
Access Point B and Sensor Node D;
Authenticity+Shared Secret KA,D between
Application A and Sensor Node D;

1 D → C : (snReq, MACiKD (snReq), iCertTTP (D))

2 C → B : (snReq, MACiKD (snReq), iCertTTP (D))

3 B → A : (snReq, MACiKD (snReq), iCertTTP (D),
IDB , MACKA,B (snReq))

4 if (MACiKD (snReq) valid) then
A → B : (ok, MACKA,B (ok), {KB,D}KA,B ,

MACiKD (ok), {KA,D, KB,D}iKD)
B → C : (ok, MACKB,D (ok),

MACiKD (ok), {KA,D, KB,D}iKD)
C → D : (ok, MACKB,D (ok),

MACiKD (ok), {KA,D, KB,D}iKD)

else
A → B : (nok, MACiKD (nok),

MACKA,B (nok))
B → C : (nok, MACiKD (nok))
C → D : (nok, MACiKD (nok))

end

Algorithm 2: Sensor Node Authentication Algorithm

6.3 Sensor Nodes
Sensor nodes are devices of high mobility with restricted

computational power. Our goal is to provide a flexible au-
thentication scheme that supports their mobility and re-
lieves the sensors from intensive computations.

Once a sensor node enters the network, it sends its re-
quest to the application (cf. Algorithm 2). An interme-
diate forwarding node C simply forwards the request. An
access point B that receives an sensor node authentication
request appends its IDB and a MAC that it creates using
the key it shares with the application A. Once A gets the
request, it checks the certificate. If the certificate is valid, A
establishes a shared secret between the access point B and
the sensor node D by returning two instances of a new key
KB,D, one encrypted with D’s initialization key iKD and
the other encrypted with the key it shares with the access
point. A also establishes a shared secret with the sensor
node by appending another new key KA,D, which it also
encrypts using iKD. Therefore, after receiving A’s answer,
D shares a secret with its gateway access point B and the
application A.

7. ROAMING AND HANDOFF
The goal of ”roaming” is seamless connection switching.

In the hierarchical sensor network scenario, sensor and for-
warding nodes switch between access points while moving or
as a result of load balancing between access points. Roam-
ing is a challenge for authentication mechanisms as trust-
relations can’t be reused since the network topology is chang-
ing quickly. In this section, we address authenticity prob-
lems associated with a forwarding node or sensor node chang-
ing their access point.

Algorithm: Sensor node handoff

Result : Authenticity and a new shared secret KB′,D
between the senor node D and the new access
point B′

1 B′ → D : (apHO, CertAn(B′), MACaKB′
n
(...))

2 D → B′ : (apHO, CertA(D), MACaKAP,D (...))

3 B′ → D : (hoOK, {KB′,D}aKAP,D , MACaKB′
n
(...))

Algorithm 3: Sensor Node Handoff

7.1 Forwarding Nodes
A forwarding node C doesn’t connect to an application

A or an access point B. Since C is not involved in any
authentication processes, there are no shared secrets to up-
date when C leaves the area near an access point. Thus, a
forwarding node never has to perform handoff.

7.2 Sensor Nodes
During the lifetime of the network, the sensor node D will

continually send data via the access point B to the applica-
tion A. When the topology of the network changes in a way
that D loses its connection to B and must connect to a new
access point B′, the data will no longer be delivered to A but
will be blocked by B′. B′ will then start the handoff-process
by sending an access point handoff request (apHO)-message
to the sensor node (cf. Algorithm 3). Appended to the mes-
sage is B′’s TESLA certificate and a MAC that will be used
by D to verify the identity of B′ after A reveals the TESLA
key. Next, D answers with its own certificate and a MAC
that it creates using its authentication key aKAP,D. B′ will
then send D the new key KB′,D that is encrypted using
aKAP,D, which B′ obtains from CertCA(D) by decrypting
it using the AP group key gKAP . D can obtain the new key
KB′,D.

However, before D can check B′’s identity, it has to wait
until A publishes the TESLA key tKAn during time slot
n+d. Once D receives that key, D can check B′’s certificate
and confirm the identity of B′. Subsequently, D may resume
sending its data to the application by securely sending its
data to B′ using KB′,D.

Switching between different forwarding nodes doesn’t re-
quire a sensor node handoff, since a sensor node initially
doesn’t share a secret key with any forwarding node. How-
ever, if the the sensor node is sending data in assured mode
while it is switches forwarding nodes, the assured service can
no longer be provided. In this case the new forwarding node
sends an error message to the sensor node. If the sensor
node wants to continue sending in assured service, it has to
reinitiate the service with the new forwarding node.

8. DATA ORIGIN AUTHENTICATION
The framework’s data origin authentication service en-

ables the application A to check whether the received data
are sent by a valid sensor node. The sensor node D uses
the secret key that it shares with the application to create a
MAC that it appends to the data packet. Depending on the
sensitivity of the data or the overall trust in the network, D
can decide to use the Weak Mode or the more sophisticated
Assured Mode to send the data. The application authen-

84

Algorithm: Sending Sensor Data in weak mode

Result : The application A can be sure that the received
data comes from sensor node D

1 D → C : (data, {rn}KB,D , MACKB,D (data),
MACKA,D (data))

2 C → B : (data, {rn}KB,D , MACKB,D (data),
MACKA,D (data))

3 if (MACKB,D (data) valid) then
B → A : (data, MACKA,D (data),

MACKA,B (data))
B → C : ({rn + 1}KB,D)
C → D : ({rn + 1}KB,D)

end

4 if (MACKA,B (data) valid) then
if (MACKA,D (data) valid) then

A processes data

else
A → B : (dRej, D, MACKA,B (dRej, D),

MACKA,D (dRej, D))
B → C : (dRej, D, MACKB,D (dRej, D),

MACKA,D (dRej, D))
C → D : (dRej, D, MACKB,D (dRej, D),

MACKA,D (dRej, D))

end
else

A → B : (dRej, B, MACKA,B (dRej, B),
MACKA,D (dRej, B))

B → C : (dRej, B, MACKB,D (dRej, B),
MACKA,D (dRej, B))

C → D : (dRej, B, MACKB,D (dRej, B),
MACKA,D (dRej, B))

end

Algorithm 4: Sending Sensor Data in weak mode

ticates unicast data by appending a MAC created with the
secret key it shares with the relevant node. It gains access to
the wireless part of the network by appending another MAC
that it creates using the key it shares with the relevant access
point. Access points forward only authenticated application
data to avoid Internet rendered attacks against the wireless
devices. Broadcast application data is authenticated using
the TESLA protocol.

8.1 Sending Sensor Data in Weak Mode
Since there are frequent changes in the network topology,

the sensor node D doesn’t know if its data will arrive di-
rectly at the gateway access point B or will first be received
by a forwarding node C, that forwards it either to another
forwarding node C′ or to B. Therefore, the format of the
data packet must depend only on the three entities that
will always be involved in the data sending process (unless
a handoff happens): the sensor node D itself, the gateway
access point B and the application A. As shown in Algo-
rithm 4, the packet contains three fields in addition to the
actual data: two MAC-fields and one encrypted random-
number-field. If the forwarding node C receives the packet,
C forwards it without doing any modification to the packet.

Algorithm: Sending Sensor Data in assured mode

Result : The application A can be sure that the received
data comes from sensor node D

1 D → C : (asdReq, {KC,D}KB,D)
C → B : (asdReq, {KC,D}KB,D ,

SIGN−KC (asdReq), CertTTP (C))

2 if (SIGN−KC (asdReq) valid) then
B → C : (asdConf, {KCD}+KC)
C → D : (asdConf, MACKC,D (asdConf))

end

3 D → C : (data, {{rn}KB,D}KC,D , MACKB,D (data),
MACKA,D (data))

C → B : (data, {rn}KB,D , MACKB,D (data),
MACKA,D (data))

4 if (MACKB,D (data) valid) then
B → A : (data, MACKA,D (data),

MACKA,B (data))
B → C : ({rn + 1}KB,D)
C → D : ({rn + 1}KB,D)

end

5 ... similar to weak mode.

Algorithm 5: Sending Sensor Data in assured mode

Once the gateway access point B gets it, B checks the first
MAC. If it is valid, B removes the MAC and the random-
number from the packet, adds a new MAC using the secret
key it shares with the application and sends it on. After
that, it decrypts the random number, adds one, encrypts
the result and sends it back to D. Receiving the result, D
can be sure that the data is on the right way to the appli-
cation. However, this challenge-response-mechanism does
not enable D to figure out who delivered the packet to the
gateway access point. There also is no certainty that a mis-
behaving forwarding node copied the packet without being
detected. A sensor node that wants all nodes on the path to
the application to be authentcated has to choose the assured
mode.

Upon the receipt of the data, the application A checks
both MACs and, if both are valid, processes the data. If one
of them is invalid, A returns a data-reject-message (dRej)
that includes information about which MAC caused trouble.
It appends two MACs that enable B and D to verify the
application as the sender of the reject-message.

8.2 Sending Sensor Data in Assured Mode
The assured mode provides authenticity along the path of

the packet at the cost of additional message exchange, higher
computational overhead and less flexibility. A sensor node
D that wants to send in assured mode first sends an assured-
data-request (asdReq) that contains an encrypted secret key
that will be used to install a shared secret between D and the
forwarding nodes along the path. Algorithm 5 shows a case,
in which a forwarding node C relays the packets from D to
B. Once C receives the request, it will sign the packet and
append its cert before forwarding it. The gateway access
point B that gets the packet first checks the certificate, then
the signature and, if both are valid, replies with an assured-
data-confirmation (asdConf) that includes the secret key
KC,D encrypted with the forwarding node’s public key. The

85

forwarding node extracts KC,D from the confirmation packet
and uses it to create and append a MAC to the confirmation
message before sending it on to the sensor node. Once the
packet reaches the sensor node, it will check the MAC. If
the MAC is valid, D can be sure, that its gateway access
point trusts the forwarding node.

To make sure that the data takes the authenticated path,
the sensor node additionally encrypts the challenge-response
random number with KC,D. In the case that more than one
forwarding node lies on the path between the sensor node
and its gateway access point, each of them appends its sig-
nature to the request before forwarding it in the direction
of the access point. The access point will establish the addi-
tional needed shared secrets between sensor and forwarding
nodes. D will successively encrypt the random number using
each of the keys in the appropriate sequence before sending
data.

9. EVALUATION
In [14], L. Zhou and Z. Haas provide a general overview of

security challenges and threats in ad hoc networks. In this
section we provide basic security and performance analysis
for the proposed framework on the basis of their security
criteria. Throughout the evaluation we assume the TESLA
protocol to be secure and that loose time synchronization
exists in the network.

9.1 Security Analysis
The use of wireless links renders an ad hoc network sus-

ceptible link attacks. Secondly, because mobile nodes may
be compromised, malicious attacks have to be considered
from outside and inside the network.

9.1.1 Wireless Link Attacks
Since this paper addresses authentication in hierarchical

ad hoc networks, neither application nor sensor data is pro-
tected against eavesdropping attacks on the wireless links.
However, installing a confidentiality service on top of an ex-
isting authentication service is a relatively easy task and is
one of the next issues that we will address. The use of mes-
sage authentication codes in our framework protects all data
against malicious modifications and information forgery. In
our framework, we address the threat of authorization viola-
tion by providing an access control service at the access point
level. While we can’t prevent intruders from coming into the
network and sending packets, we can make it uninteresting
for them to do so. The most likely reason for an intruder
to use the network’s resources is to connect to the Internet,
which is prevented by access control at the access point.
This access control also restricts battery-consumption at-
tacks by making it impossible to launch such attacks from
outside the wireless part of the network. The deletion of
packets in the wired part of the network is a threat that we
haven’t addressed yet.

9.1.2 Compromised Nodes
Since all initial authentication is done by the application

that drives the network, compromised sensor nodes can’t
inflict any damage to the network other than feeding the
application with wrong data. Because of the constrained
battery resources, denial of service (DoS) attacks launched
by compromised sensor nodes are unlikely to happen. Even
in the case of such an attack, the application can easily

find the origin of the DoS-packets and end the sensor node’s
trust relationships in the entire network. Compromised for-
warding nodes don’t have any means to threaten the au-
thentication framework because they don’t share a secret
with the application. Since the sensor data packets include
a challenge-response mechanism, false forwarding of packets
or their deletion by a forwarding node will be detected by the
sensor node. The framework doesn’t provide the possibility
to avoid or detect the malicious duplication and distribu-
tion of sensor node packets. However, any modification to
the data will be detected by the access point or the appli-
cation and in case the data was sent in assured mode the
malicious forwarding node can be identified. If a compro-
mised forwarding node stops forwarding data to or from the
sensor node or continuously modifies sensor node data that
then gets rejected at the access point, the sensor node must
find a different network node to connect to (i.e. another for-
warding node or its gateway access point). A compromised
access point threatens the network’s access control mech-
anism. It can stop forwarding packets in both directions.
While the forwarding nodes won’t detect the problem, the
sensor nodes will notice the lack of certificate renewals and
application TESLA keys. Since a sensor node is not able to
distinguish between a compromised forwarding node and a
compromised access point circumstance, it acts exactly the
same in this case. However, for an attacker it is much more
complicated to compromise an installed access point than a
mobile node. Access points should feature a high degree of
physical protection. Further, once an attacker manages to
compromise the application, the authentication framework
fails. However, if the application itself is compromised there
is no use in protecting the sensor devices or data.

9.2 Performance Analysis
We now provide basic performance analysis for our au-

thentication framework according to the major performance
criteria of [14]. First, since ad hoc networks feature a fre-
quently changing topology, security solutions must be highly
adaptable, and secondly, because an ad hoc network may
consist of thousands of sensor nodes, the security mecha-
nisms should be scalable.

9.2.1 Adaptability
Our proposed architecture is capable of adapting to meet

the authentication needs of the sensors resulting from topol-
ogy changes. The handoff procedure described in Section 7
facilitates the establishment of new trust relationships as
nodes move without requiring the participation of the ap-
plication. This is desirable since it does not burden the
application, and hence the application does not serve as a
bottleneck. Further, our authentication framework does not
require the explicit participation of the forwarding nodes in
the authentication of data. We therefore do not have to up-
date any authentication parameters due to the mobility of
the forwarding nodes.

9.2.2 Scalability
Since our scenario is application-driven, the amount of

resources required by sensors to store their authentication
keys remains the same as the number of sensors increases.
Although the amount of keys that must be maintained by
access points and the application will increase, these entities
have more resources to devote to security services.

86

We have conducted an initial evaluation the amount of
time required to a 4096-bit message authentication using
SHA-1, and 2048-bit RSA signing using the libtomcrypt li-
brary [15]. Using gprof on a Pentium-4 2GHz Linux ma-
chine, we measured that SHA-1 required an average of 46
milliseconds to perform, while RSA signing required an av-
erage of 2.26 seconds to perform. Although this platform
is not the same as a typical sensor node, the timing mea-
surements do allow us to estimate that the RSA operation
requires roughly 4900 times more power than performing
SHA-1. We are currently conducting a more thorough es-
timation of power consumption on Cerfcubes [16], which is
the sensor node device planned for our testbed.

In our framework, we have sought to distribute the com-
putational load according to each layer’s capabilities. Ex-
amination of our protocols reveals that we have not bur-
dened sensor nodes with public key operations. Instead,
due to their use of TESLA certificates, the sensor nodes use
computationally efficient MACs to perform authentication.
However, we have placed more computational burden upon
higher-powered access points by requiring them to perform
public key cryptographic operations.

10. CONCLUSION
In this paper, we have presented an authentication frame-

work for an application-driven hierarchical ad hoc sensor
network. Our framework authenticates incoming nodes, main-
tains trust relationships during topology changes through a
flexible handoff scheme, and provides data origin authenti-
cation for sensor data. Further, the presented framework
treats nodes according to their resource limitations. In par-
ticular, weak sensor nodes are not involved with the cre-
ation or validation of public key signatures. Instead, sensor
nodes perform runtime entity authentication by the means
of TESLA certificates, a new kind of certificates that we pro-
pose as an alternative to the widely used PKI certificates.

11. REFERENCES
[1] A. Perrig, R. Szewczyk, D. Tygar, V. Wen, and

D. Culler, “SPINS: security protocols for sensor
networks,” Wireless Networks, vol. 8, no. 5, pp.
521–534, 2002.

[2] A. Weimerskirch and G. Thonet, “A distributed
light-weight authentication model for ad-hoc
networks,” in The 4th International Conference on
Information Security and Cryptology (ICISC 2001),
pp. 341-354, 2001.

[3] L. Venkatraman and D. Agrawal, “A novel
authentication scheme for ad hoc networks,” in IEEE
Wireless Communications and Networking Conference
(WCNC 2000), vol. 3, pp. 1268-1273, 2000.

[4] J. Kong, H. Luo, K. Xu, D. Gu, M. Gerla, and S. Lu,
“Adaptive security for multi-layer ad-hoc networks,”
Special Issue of Wireless Communications and Mobile
Computing, 2002.

[5] J. Kong, and M. Gerla, “Providing Real-time Security
Support for Multi-level Ad-hoc Networks,” MILCOM,
vol. 2, pp. 1350-1355, 2002.

[6] P. Gupta and P. Kumar, “The capacity of wireless
networks,” IEEE Transactions on Information Theory
IT 2000, vol. IT-46(2), pp. 388–404, 2000.

Abbreviation Explanation
IDD Identification Number of node D

TSB Time Stamp issued by node B

KB,D Symmetric Key shared by the nodes

B and D

+KA RSA Public Key of application A

−KA RSA Private Key of application A

gKAP Symmetric Key shared by all access

points and the application (group key)

tKAn TESLA Key of application A, valid in

timeslot n

SIGN−KB
(offer) Signature over offer by node B using

its private key −KB

SIGN−KT T P
(...) Signature over the complete packet by

the TTP using −KTTP

MACKA,D
(data) Message Authentication Code of data

using the key KA,D

MACKB,D
(...) Message Authentication Code of the

complete packet using the key KB,D

iKD Initial Key of node D issued

by the TTP

aKBn Access Point B’s Authentication Key

disclosed in timeslot n

aKAP,D Sensor Node D’s Authentication key

needed for handoff with access point

iCertTTP (D) Initial Certificate of node D issued

by the TTP

CertAn (B) TESLA Runtime Certificate of access

point B issued by application A,

valid in timeslot n
CertA(D) Runtime Certificate of sensor node D

issued by application A

[7] P. Gupta and P. Kumar, “Internets in the sky: the
capacity of three dimensional wireless networks,”
Communications in Information Systems, vol. 1(1),
pp. 33–50, 2001.

[8] S. Zhao, K. Tepe, I. Seskar, and D. Raychaudhuri,
“Routing protocols for self-organizing hierarchical
ad-hoc wireless networks,” in IEEE Sarnoff 2003
Symposium.

[9] D. Johnson, D. Maltz, and J. Broch, “DSR: The
dynamic source routing protocol for multihop wireless
ad hoc networks,” in Ad Hoc Networking, edited by
Charles E. Perkins. 2001, pp. 139–172,
Addison-Wesley.

[10] P. R. Zimmermann, The official PGP user’s guide,
MIT Press, 1995.

[11] ITU-T, “The directory: authentication framework,”
IT - Open Systems Interconnection.

[12] A. Perrig, R. Canetti, B. Brisco, D. Song, and
D. Tygar, “TESLA: Multicast source authentication
transform introduction,” IETF working draft,
draft-ietf-msec-tesla-intro-01.txt.

[13] M. Bellare, R. Canetti, and H. Krawczyk, “Keying
hash functions for message authentication,” Advances
in Cryptology - Crypto ’96, pp. 1-15.

[14] L. Zhou and Z. Haas, “Securing ad hoc networks,”
IEEE Network, vol. 13, no. 6, pp. 24–30, 1999.

[15] “Libtomcrypt,” www.libtomcrypt.org.

[16] “Intrinsyc product page,”
www.intrinsyc.com/products/cerfcube.

87

