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ABSTRACT

The benefits of in-network processing for wireless sensor
networks include improved scalability, prolonged lifetime,
and increased versatility. This paper addresses the chal-
lenges associated with securing in-network processing within
WSNs, and proposes a collection of mechanisms for delegat-
ing trust to aggregators that are not initially trusted by
individual sensor nodes. Security mechanisms are proposed
to address the downstream requirement that sensor nodes
authenticate commands disseminated from parent aggrega-
tors. Conversely, security mechanisms are also proposed to
address the upstream requirement that aggregators authen-
ticate data produced by sensors before aggregating. Simu-
lation results in ns2 of the proposed mechanisms for secure
in-network processing are presented, as well as implementa-
tion on a mote testbed.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General-
Security and Protection

General Terms
Design, Security

Keywords

Security mechanisms, Sensor networks, In-network process-
ing

1. INTRODUCTION

Wireless sensor networks (WSN) have the potential to rev-
olutionize the process of information gathering and process-
ing over the next decade. In these networks, a distributed
collection of sensor nodes forms a network interconnected
by wireless communication links. Each sensor node acts as
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an information source, sensing and collecting data samples
from its environment. Sensor nodes perform routing func-
tions, creating a multi-hop wireless networking fabric that
relays data samples to a back-end server via a small num-
ber of base stations. To date, applications of sensor net-
works include habitat monitoring [25][39][40], robotic toys
[24], target tracking [19], and battlefield monitoring [2]. In
the near future, we expect an even wider range of applica-
tions to emerge, including location aware sensor networks
in the home and office, assistive technology applications
with biomedical sensing, and outdoor deployments of GPS-
enabled sensor networks [1] to monitor storms, fires, and
marine ecologies.

The primary focus of this paper is on providing security
mechanisms to enable the secure operation of in-network
processing, a key emerging theme in the design and deploy-
ment of WSNs. In one form of in-network processing, an
intermediate node or aggregator fuses or aggregates sensor
data collected from a group of sensor nodes before forward-
ing the aggregated data on to a base station. For example, in
a sensor group comprised of temperature sensors, the aggre-
gator can collect temperature readings from different sensor
nodes in a given time interval, locally process these readings,
and then forward an average of these readings [41].

The benefits of in-network processing for WSNs include
improved scalability, prolonged lifetime, and increased ver-
satility. First, since aggregation reduces the volume of data
communicated throughout the sensor network, then the ben-
efits of aggregation include prolonging the lifetime of the
WSN, which is one of the most critical factors in the design
and deployment of WSNs. Second, since the aggregators
themselves may be aggregated to form a multi-level hier-
archy, then another benefit of in-network processing is en-
abling scalability via hierarchy, a technique that has been
widely employed in wired networks like the Internet. Third,
in-network processing improves the versatility of WSNs so
that important applications such as target tracking can be
efficiently implemented, e.g. by localized target tracking.

A second form of in-network processing also employs hier-
archy, except in the reverse direction, in order to disseminate
control/command messages from the base station outwards
through the aggregators and downstream towards the sensor
leaf nodes. Again, hierarchy provides a scalable and efficient
means of communication.

As shown in Figure 1, a given target tracking application
for a WSN may need to employ both data aggregation and
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Figure 1: Securing a wireless sensor network with in-
network processing in the form of (a) aggregation and
(b) dissemination.

data dissemination. For example, Figure 1(a) shows how
sensor data is first aggregated. In Figure 1(b), the base sta-
tion generates and disseminates commands to nearby sub-
sets of sensors to enable target tracking.

Examples of in-network processing for WSNs abound in
the literature. In directed diffusion data routing for WSNs
[13], in-network processing reinforces routes at intermedi-
ate nodes such that sensor data is routed correctly to the
sinks that express interest in those events. Placement of
in-network filters within a sensor network has also been ex-
plored [3]. Both the TinyDB project [23] and the Cougar
project [6] offer powerful database tools to support efficient
in-network query processing. In addition, in-network acous-
tic signal processing has been distributed across a hetero-
geneous hierarchy of sensor nodes with varying capabilities
[16].

The focus of this paper is on the challenge of securing
in-network processing for WSNs, i.e. of providing mecha-
nisms for securing both upstream data aggregation as well
as downstream data dissemination. Secure data aggrega-
tion requires at the minimum that intermediate aggregators
be able to authenticate the reported data of their down-
stream nodes. Secure data dissemination requires at the
minimum that each sensor node be able to authenticate
commands sent from parent nodes. For both upstream and
downstream directions, protection is also needed to pro-
vide security against eavesdropping, tampering, denial-of-
service (DOS) attacks, and the physical compromise of sen-
sor nodes.

WSNs pose additional design challenges in terms of their
resource constraints and the broadcast nature of the wire-
less medium. Limited memory, CPU, communication and
battery life limit the applicability of compute-intensive tech-
niques like public-key cryptography. Wireless communica-
tion increases the vulnerability of the network to eavesdrop-
ping, unauthorized access, spoofing, and replay and denial-
of-service (DOS) attacks. For example, the problems with
wireless security standards such as Wired Equivalent Pri-
vacy (WEP) for wireless Ethernet 802.11b have been well-
documented[4]. These problems are exacerbated by the re-
source constraints imposed on sensor nodes, limiting the
strength of defensive security countermeasures such as en-

cryption and authentication.

Related work in secure sensor networks at first largely ig-
nored the role of in-network processing in hierarchical WSNs,
though more recently has begun to address this issue. SPINS
[30] has proposed general security primitives for resource-
constrained sensor networks. These primitives are not specif-
ically tailored to in-network processing in hierarchical WSNs.
INSENS|[7] proposes an intrusion-tolerant routing mecha-
nism for WSNs rooted in a base station, but does not ad-
dress either in-network processing or WSNs with an arbi-
trary multi-level hierarchy. Recently, B. Przydatek, D. Song
and A. Perrig addressed secure data aggregation in sensor
networks from the point of view of detecting forged aggrega-
tion data values [31]. However, this paper does not address
the issues of how to build a secure network infrastructure to
support hierarchical WSNs, e.g. how to set up trust between
aggregators and sensor nodes and how to securely dissemi-
nate commands from aggregators.

In this paper, we focus on a simple yet flexible hierar-
chical model of in-network processing and focus on securing
this model. As shown in Figure 1, in this model, aggregators
form a multi-hop sensor groups encompassing any number of
sensor nodes. Multiple levels of aggregation hierarchy may
be formed. Within each sensor group, an aggregator can
both aggregate data as well as disseminate commands. This
hierarchical network can be dynamically constructed: the
aggregator can create or dissolve sub-groups as needed. This
network model is flexible enough to support most forms of
in-network processing, e.g. decentralized in-network query
processing of [3] and TinyDB [23]. This paper makes the
further common assumption that resource-constrained sen-
sor nodes must employ symmetric key techniques. As a
means of securely bootstrapping the entire network, each
node is preconfigured with a custom symmetric key shared
only with the base station.

Based on this model, the challenge is to develop a secure
and efficient mechanism for delegating trust to aggregators
within the WSN. Recall that the sensor nodes do not im-
plicitly trust a fellow node that has been assigned as an
aggregator in our model. Instead, the sensor nodes and ag-
gregators at first only trust the base station. Thus, our goal
is to leverage the base station as a trusted third-party to
find a set of mechanisms that enable sensor nodes to trust
aggregators, and vice versa. Three issues must be consid-
ered. First, this paper outlines a method for determining
secure membership, so that both sensor nodes and aggrega-
tors can come to a secure understanding as to which nodes
belong to which sensor group. Second, this paper offers a
mechanism whereby an aggregator can securely and scalably
disseminate commands that are trusted, i.e. authenticated,
by individual sensor nodes. Third, this paper provides a
mechanism for aggregators to trust the data nodes, again
by authentication.

The contributions of this paper are as follows. To com-
mit authority to an aggregator, we present a mechanism for
distributing one-way sequence numbers, derived from one-
way hash chains, to memory-constrained aggregator nodes.
Combined with more traditional MAC authentication, one-
way sequence numbers provide an efficient means to quickly
authenticate messages from an aggregator with little setup
overhead. We also present a lightweight mechanism for es-
tablishing pairwise secret keys between sensor nodes and
their corresponding aggregators. Finally, we introduce the

84



notion of “ripple” keys as an efficient mechanism to achieve
secure local broadcast within a small network of sensor nodes
in an aggregator’s domain.

The rest of the paper is organized as follows. Section 2 de-
scribes our approach to trust delegation using one-way hash
chains. Section 3 describes a lightweight key setup mecha-
nism. Section 4 introduces the ripple key concept. Section
5 details our overall security framework and protocol for
distributing trust in a hierarchical WSN. It also briefly de-
scribes how to dynamically build a subgroup, and how to
add a node to a subgroup. Section 6 reports on a prototype
simulation and implementation, and provides a detailed per-
formance evaluation. Section 7 discusses related work, and
section 8 concludes the paper.

2. DELEGATION OF AUTHORIZATION

An aggregator of a sensor group needs to disseminate ap-
propriate commands to its group members to control their
operation. In a hostile computing environment, an impor-
tant requirement is that the sensor nodes must be able to
distinguish between a command originating from the aggre-
gator of their sensor group and a forged command originat-
ing from some malicious node. Since an aggregator is chosen
dynamically after a WSN has been deployed, it is not pos-
sible to preconfigure sensor nodes and the aggregators with
appropriate cryptographic information to accomplish this.
We propose a technique called delegation of authorization
that allows an aggregator to be loosely authenticated after
sending a command to the members of its sensor group. Us-
ing this technique, the base station can delegate authority
to an aggregator for a limited period of time. This tech-
nique exploits two security mechanisms that have been used
for building secure WSNs: one-way hash chains [17, 18] and
the pTESLA protocol [30].

A one-way hash chain (OHC) is generated by a one-way
function F'. F satisfies the following two property: 1) Given
z, it is easy to compute y, such that y = F(z); and 2) Given
y, it is computationally infeasible to compute x such that
y = F(z). An OHC is a sequence of numbers, K, K,—1,
..., Ko, such that

Vi:0<j<n:K;j_1=F(Kj;)

To delegate trust to the aggregators, the base station com-
putes separate one-way hash chains, OHC;: O%,, O%,_1, ...,
Oj for each sensor group SG;. It sends Of, to the aggrega-
tor of SG;, and O} to all members of SG;. An aggregator
ag; can use OHC; to loosely authenticate itself in the com-
mands it sends to its group members. In the k** packet sent
by agi, O% is included. A receiver node authenticates the
source of the packet by verifying F¥(O%L) = O}, where F*
represents applying function F' k times. This verification
guarantees that ag; must have generated the number Of in
the packet. Because F~! is computationally infeasible, it
is impossible for a sensor node other than ag; to determine
what the next number in OHC; is. In section 4, we will de-
scribe the method of authenticating the content of a packet
sent by ag;.

A simple way to disseminate O} to all members of SG; is
by sending a separate unicast message to each sensor node
in SG;. This approach is of course not scalable. Instead, we
propose to use gTESLA for doing this. gTESLA is an effi-
cient and light-weight secure broadcast protocol for wireless
sensor network [30]. This protocol requires that the base
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Figure 2: Main One-way hash chain and sensor group
one-way hash chain.

station and nodes are loosely time synchronized, and each
node knows an upper bound on the maximum synchroniza-
tion error. In addition, the sender of the broadcast packets
maintains a one-way hash chain (Ko, K1, ... K,) called a
key chain, and each sensor node is configured with Ky, as
in figure 2. A packet broadcast from the base station in
time slot ¢ contains a message authentication code (MAC)
generated using key K;. When a sensor node receives this
packet, it doesn’t know K;. The base station broadcasts
the key K; after d time slots, where d is of the order of a
few time intervals. d should be greater than an reasonable
round trip time between the sender and the receivers. On
receiving a key K, in time slot ¢t + d, a node verifies that
F(K,) = Ko. If the key is verified, the node verifies the
integrity of the message received earlier by computing the
MAC using the key.

To delegate trust to the aggregators, the base station uses
MTESLA to broadcast a list containing < SGi, ags, Og, i >
for each sensor group SG; to all nodes in the network. Here
73 is a random number that is used for establishing the pair-
wise shared key (see Section 3). The base station also uni-
casts OF, to the aggregator ag;. By using pTESLA, each
sensor can verify whether the message it received originated
from the base station, and whether the contents of the mes-
sage have been tampered with.

The one-way hash chain provides a very convenient way
to not only delegate trust to an aggregator, but also limit
the length of this trust. The size of the one-way hash chain
that the base station generates for an aggregator ag; au-
tomatically determines the number of packets that ag; can
send to its sensor group members. So, if the length of this
chain is m, ag; can send at most m — 1 separate commands
to the sensor nodes. After ag; has used up all numbers in
OHC;, the base station can assign a new OHC; to ag; us-
ing the same method. In addition to limiting the length of
trust delegated to an aggregator, it is possible to restrict
the type of commands that an aggregator may send using
the delegated OHC'. For example, the sensor nodes can be
preconfigured with a set of commands, and they accept only
one of the commands from this set from the aggregator.

In our protocol, if the aggregator is compromised, the
damage is confined to the aggregator’s own sub-group of
sensors. This is because the compromised aggregator can-
not predict the sequence of numbers in the one-way hash
chain of any other aggregators. However, the malicious ag-
gregator can still generate forged aggregation data. This
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problem was addressed in [31].

Because of memory limitations, a sensor node cannot store
a complete OHC, even though the chain is much shorter
than the main OHC maintained by the base station. To
solve this problem, we can make tradeoffs between compu-
tation and storage. An aggregator need only save the seed
and some intermediate numbers in its OHC. The aggrega-
tor can generate the sequence numbers between intermediate
numbers by applying the one-way function repeatedly. One
strategy for determining the intermediate numbers is to se-
lect more numbers that will be used in the near future, and
sparsely select fewer numbers that will be used much later.
We can also select intermediate numbers based on a skiplist,
as suggested in [11].

3. LIGHTWEIGHT SHARED SECRET KEY
ESTABLISHMENT

To provide support for ensuring privacy and integrity of
data packets sent from sensor nodes to their aggregators,
a separate pairwise secret key shared between each sensor
node and its aggregator is required. We call this key a subkey
of a sensor node. This shared key can also defend against
the Sybil attack [8].

In our design, the base station generates a subkey for
each sensor node. We assume that each sensor node is pre-
configured with a custom secret key Ks that it shares with
the base station only. Given K; and a random number r, a
subkey K, for s is generated as follows:

K, =G(Ks,7)
Function G has the following properties:

1. An adversary that knows function G' and random num-
ber r cannot compute K, without knowing KCs;

2. An adversary that knows subkeys, K;,o, Koryy .-
K ;; cannot compute K., , where r; is different from
T0y T1y « vy O T3

3. An adversary that knows subkeys, Ky ., Ko ryy .-,
K, cannot compute K.

Function G can be implemented using a random number
generator, as suggested in [30]. A subkey K, generated
using the method outlined above is safe, because it does not
compromise the secrecy of Ks, even if an adversary is able
to hack K ,.

After generating the subkeys of sensor nodes, the base sta-
tion needs to distribute them to the respective nodes and ag-
gregators in a secure manner. Again, a simple way to do this
is to send a separate unicast message to each node. How-
ever, as observed before, this approach is not scalable. It is
not possible to use a broadcast mechanism such as yTESLA,
because the information (subkey) to be communicated is dif-
ferent for each node. We propose a three-step, light-weight
mechanism shown in Figure 3 to distribute these subkeys.

First, the base station chooses a unique random number
r; for each sensor group SG;, and generates subkeys for
each sensor node in SG; using the method described above.
It broadcasts r; using the pTESLA protocol as described
in Section 2. After receiving this broadcast message, each
sensor node knows the random number 7; used to generate
subkeys for nodes in sensor group SG;. However, they do
not know which sensor group they belong to.

<
Slrwlksr\ Olilm‘ll"lMAC(K Sri'olllmi |I")
(step2) (step 3)
SG,|ag; |0y IT, @
(step 1)

Figure 3: Secret Key Establishment

Second, the base station send a separate unicast message
to each aggregator. Full details of this unicast message are
described in Section 5. The unicast message sent to aggre-
gator ag; includes the subkeys of all sensor nodes of sensor
group SG;. Contents of this message are encrypted using
the pairwise shared secret key between ag; and the base sta-
tion to preserve the confidentiality of the message, and a
MAC of the message contents generated using the pairwise
shared secret key is appended to ensure the integrity of the
message.

Third, ag; sends the following unicast message to each
sensor node s in its sensor group.

agi — s: O§|ag¢|rq;|MAC(Ks,” , Oi|ag¢|m)

On receiving this message, s learns that it belongs to sen-
sor group SG;. It first computes its subkey K, by com-
puting G(Ks, ;). It then verifies the integrity of the unicast
message by computing a MAC on Of|ag;|r; using K, ... If
verified, it completes authentication that this message in-
deed originated from ag; by checking if F(O}) = O}.

4. EFFICIENT SECURE BROADCAST INA
SMALL GROUP: RIPPLE KEY

While the delegation of authorization discussed in Section
2 allows an aggregator to loosely authenticate itself in the
commands it sends, a related issue is how is a command
propagated to all sensor nodes within a sensor group. One
simple way to do this is to send a separate unicast mes-
sage to each member of the group. However, since the same
command is being sent to all members, a secure broadcast
mechanism such as pTESLA can be used. While pTESLA
protocol provides support for secure broadcast, there are two
disadvantages of using it to disseminate commands with in
a sensor group. First, there is a need for loose time syn-
chronization among the sensor nodes. Second, the delayed
release of the yTESLA key can extend the overall time for
command dissemination. One way to address this is to set
very short time slots. However, time synchronization be-
comes difficult for shorter time slots. Furthermore, since
one sequence number from the key chain is used up by each
time slot, shorter time slots will result in faster exhaustion
of the key chain.

We assume that all nodes in a sensor group are located
close to one another. For example, the distance between far-
thest node to the aggregator is less than 5 hops. We think
this is a reasonable assumption since it is the best way for
in-network processing to save energy and data transmission.
Based on this, we propose a method for command dissemi-
nation with in a sensor group that does not rely on unicast
messages, and does not require time synchronization. We
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call this method the ripple command dissemination method.
We assume that the nodes in a sensor group are geograph-
ically close together. As shown in Figure 4, a sensor group
is organized into multiple layers called ripples. A ripple is
defined as the set of all nodes that are at the same distance
(number of hops) from ag. Ripple 1 comprises of all nodes
that are exactly one hop away from ag, ripple 2 comprises
of all nodes that are exactly two hops away from ag, and
so on. For each ripple, a secret key called a ripple key is
generated by ag. A ripple key KR; for ripple j is shared
between ag and the members of ripple j. To disseminate a
command, ag sends a separate ripple message for each rip-
ple in its sensor group. A ripple message for ripple k is a
broadcast message forwarded exactly once by intermediate
nodes until the message reaches the nodes in the ripple k.

layer, when node nq gets the message, it can change the
content part of the message and generate a new M AC, and
send the packet to ny. If ny hasn’t already received the orig-
inal message from aggregator, n, will be unable to identify
the message as forged. One protection against this attack
would be to require that each sensor node share a secret key
with all of its direct downstream nodes. The content of the
command message is encrypted by this secret key, so that
the format of the packet is:

E(KS,MCJ')

Although encryption is not used to protect the integrity of
the data, since Mc; contains a M AC, it is very difficult for
an adversary to spoof the contents of E(Ks, Mc;) ([26]). If

The format of a ripple message for ripple j is as follows:
Mec; : Content|O;| M AC(KRj, Content|O;)

Here O; is an OHC number of aggregator ag for loose
authentication. ag uses a different OHC number for each
ripple message, even for the same command being dissem-
inated to nodes in a different ripple. When a sensor node
at layer j gets Mc;j, it can verify whether the packet is sent
from ag using O;, and it can verify the integrity of the packet
by computing a MAC on Content|O; using K R;. Interme-
diate nodes that are not in ripple j cannot tamper with the
contents of a ripple message without detection, because they
don’t know KR;.
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Figure 4: Ripple Command Dissemination.

A disadvantage of the ripple command dissemination method
is that it requires an aggregator to send the same command
multiple times (although it can send all of them in a short
time), once for each ripple. Also, a separate ripple key for
each ripple needs to be maintained. If the number of rip-
ples in a sensor group is small, e.g. less than 5, we expect
that the ripple command dissemination method will provide
improved performance, as shown in Section 6. If a sensor
group contains too many layers, the ripple command dis-
semination method can become inefficient. In such a case,
it is useful to set up sub sensor groups.

Although the ripple command dissemination method is
efficient, it is subject to a rushing attack[12]. A malicious
node can send forged messages to nodes in the same layer.
For example, in figure 4, if node np and ng are in the same

nq and ny are in the same layer but have different upstream
nodes, ng will have a very difficult time spoofing the message
sent to np because ng doesn’t have the secret key between
np and its upstream node n,. If two nodes share the same
upstream node, e.g. m, and n. share upstream parent ng,
they will receive the same broadcast command packet almost
at the same time, so the chances of n. attacking n; is very
small. However, if there are multiple malicious nodes in
different layers and they cooperate together, they can spoof
the message to the outer layer nodes.

Given this weakness, we propose to employ ripple keys in
situations where nodes are geographically close and it is dif-
ficult to launch cooperative attacks with multiple malicious
sensor nodes. We can use ripple command dissemination
for the commands which require quick reaction from mem-
ber nodes, such as query commands, and gTESLA for other
critical commands that don’t have a deadline. For exam-
ple, if an aggregator wants to set up a subgroup, it can use
M TESLA to bootstrap the one-way hash chain.

5. BUILDING ASECUREHIERARCHICAL

WSN: AN INTEGRATED SOLUTION

The security mechanisms introduced in the preceding sec-
tions are integrated into a single solution for setting up a
secure and hierarchical WSN in four rounds, as shown in Fig-
ure 5. In round 0, the base station discovers the topology
of the complete sensor network and performs some initial
preparation. In round 1, the base station securely broad-
casts a list containing group id and aggregator id of all sen-
sor groups to each node in the network using pTESLA. The
intent of this round is to inform each sensor node of the exis-
tence of all sensor groups. In round 2, the base station sends
a separate unicast message to each aggregator. The intent
of this message is to inform an aggregator of the topology of
its sensor group, and delegate trust to the aggregator for a
limited period of time. Finally, in round 3, each aggregator
sends a set of separate unicast messages to the members of
its sensor group to set up appropriate cryptographic keys
and forwarding tables to facilitate secure in-network pro-
cessing.

5.1 Round 0 - Preparation

To securely discover the network topology and set up the
routing tables of all sensor nodes, we rely on an appropri-
ate secure routing protocol for WSN, such as INSENS [7].
INSENS provides support for discovering the topology of
a sensor network and building routing tables in the pres-
ence of security attacks such as tampering with transmitted
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Figure 5: Building a Secure and Hierarchical WSN

data, compromising sensor nodes, and launching DOS at-
tacks. Using such protocol, a WSN as shown in Figure 5(a)
is built. In this network, each sensor node has a path to the
base station. Based on the network topology, the base sta-
tion configures the hierarchical network by dividing it into
sensor groups, assigning a unique group id to each sensor
group, and choosing an aggregator for each sensor group.

5.2 Round 1 - Group Announcement

In this round, the base station uses the delegation of au-
thorization mechanism described in Section 2 to inform each
node the identities of all sensor groups, e.g. their aggregator
ids, initial sequence number of OHC of each group, and ran-
dom number used to generate subkeys. For a sensor group
SG, the broadcast message contains a list Lsg; containing

Lsg,; : SGi|agi|Oé|m

If the base station wants to set up several sensor groups
at the same time, it can put lists for all sensor groups in one
message. The yTESLA protocol protects the authenticity
and integrity of the message. If the base station doesn’t set
up groups too often, the overhead of this broadcast is small.
Figure 5 (a) shows this round. After receiving this message,
each sensor can verify whether the message it received orig-
inated from the base station, and whether the contents of
the message have been tampered with. At the end of group
announcement round, a sensor node has the complete list of
sensor groups in the network, but still doesn’t know which
sensor group it belongs to. The following is the message
format for this round.

B — ALL LSG,-lMAC(Kt,LSGi)
B ALL : K;

5.3 Round 2 - Trust Commitment

In this round, the base station sends all information that
an aggregator needs to securely build a sensor group. The
information includes internal routing information, one-way
hash chain(s), and the subkeys of the member nodes.

For each sensor group SGj, the base station first generates
a subkey for each member node as described in section 3.
The base station then sends a unicast message to the aggre-

gator ag;. This message includes < topology;, ohc;, ri, key_list; >.

Here, topology; is the topology of the sensor group SG;.
Topology includes all connectivity information among the
nodes in SG;. For example, if nodes s, and s, are in SG; and
can communicate directly with each other, we put < s4, $p >
in topology;. ohc; is the one-way hash chain that the aggre-
gator will use. ohc; must contain Of, that ag; can use to
generate other numbers in the one-way hash chain. In addi-
tion, ohc; can contain some intermediate numbers in OHC
to save computing cost and memory usage of ag;. key_list;
is the list of all subkeys generated by the base station for
the nodes in SG;. Finally, the base station uses the encryp-
tion key of ag; to encrypt the message, the M AC key of ag;
to protect message integrity, and sends the message to ag;.
The format of the message is

B = agi : E(Ke,,,, Cmitag, )| MAC(Km,,, , Cmitag;)

Here Cmt,g; = topology;|ohc;|ri|key list;. Ke,,, and Kin,,,
are ag;’s encryption key and MAC key, respectively.

The size of this message could be much larger than the
maximum packet size of a common sensor network platform.
To send this message, base station needs to segment it into
many packets and sends them to ag;. The whole message is
protected by M AC so adversary cannot spoof the content of
this message. Figure 5 (b) shows this round. After getting
the whole message, an aggregator has the complete topology
information of its sensor group, and enough cryptographic
data to securely establish communication with in its sensor

group.
5.4 Round 3 - Building Each Sensor Group

The goal of this round is to provide four pieces of infor-
mation to each node in a sensor group: the sensor group it
belongs to, its forwarding table for sending and routing data,
the pairwise shared key it shares with the aggregator, and
the ripple key of the ripple it belongs to. Since aggregator
has sensor group topology information, then the aggrega-
tor can compute paths and routing tables for each member
node. The simple way to do this is to use a breadth-first
search algorithm to compute the shortest paths from each
member node to the aggregator.

To securely send this information to member nodes, ag;
sends two unicast messages to each node in a breadth-first
manner, i.e. it sends two unicast messages to each node in
ripple 1 first, to each node in ripple 2 next, and so on. In the
first message sent to node s, it includes < O%, ag;, r:, MAC >.
The significance of the information included in this message
was discussed in Section 3. The overall result of this first
message is that a node now knows the sensor group it be-
longs to, and its subkey that it shares with its aggregator.

In the second unicast message to s, ag; includes < fts, KR; >,

where ft; is the forwarding table of s and K R; is the ripple
key of the ripple s belongs to. This message is encrypted by
the encryption key ke, .. generated from subkey of s K.,
and key kn, ... is used to generated the M AC. knm, . is also
generated from K ;. After receiving the second message,
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s can set up its routing tables and the ripple key. It is now
ready to route packets for its downstream nodes.

Figure 5 (c) shows this round for building sensor group.
Formats of the two unicast messages sent by ag; are as fol-
lows (assume that s is in ripple j7):

O'1lagi|ri| MAC(K; v, O'1agi|r:)
E(ke,,.,, fts|KR;)| M AC (km,, ., fts|KR;)

After this round, the hierarchical WSN has been set up,
and secure in-network processing can commence. At this
stage, each aggregator ag; has a one-way hash chain for
broadcasting commands to its group. Each sensor node
s has a ripple key KR;, initial number O}, and a subkey
K ;. ag; can use ripple keys to securely send commands
to its group as discussed in Section 4. Each sensor node
can securely send its sensed data to its aggregator using its
subkey Ks,.,.

5.5 Group Dynamic Maintenance

Because of resource constraints, the OHC maintained by
an aggregator should not be too long. When this chain is
exhausted, a new OHC needs to be set up for the subgroup.
To set up a new OHC, the base station or upper level aggre-
gator broadcasts the initial number of the new OHC, and
then unicasts the seed and other numbers of the new OHC
to the aggregator.

The mechanisms proposed in this paper also support dy-
namically generating new subgroups. The process of build-
ing each subgroup is similar to rounds 1 to 3 for building
groups. First, the aggregator generates a new OHC, and
broadcasts the initial number of the new OHC to its sub-
group. Second, the aggregator unicasts the seed of the new
OHC, node connection information of the subgroup, and
sub-subkeys to the sub-aggregator of subgroup. The sub-
aggregator of a subgroup unicasts subgroup information to
each member node in the subgroup, with the similar process
described in round 3.

If a node wants to join a subgroup, it needs to know the
OHC number used by aggregator, and it needs to share a
secret key with aggregator. In addition, it needs the for-
warding table for data routing within the group. To add a
node into a group, we propose a Kerberos-like protocol[28].
Let’s assume new node s wants to join a top-level group
SG. The aggregator ag’s upper level aggregator is the base
station B. First, s detects its neighbors information and
the group ID of SG. Then s unicasts the aggregator ID, its
neighbors information, and its identity to SG’s aggregator
ag. ag forwards this message to base station B. B verifies
the information from s. If the information is valid, B uni-
casts s’s subkey ks,r;, and connection information of s to ag.
B also encrypts the subkey index r; with s’s encryption key,
and unicasts it to ag:

E(Keagsks,r;|Cnts)|E(Ke, i) MAC

Where Cnt, is the list of s’s neighbor nodes in SG. ag
then unicasts the forwarding table of s, the OHC number,
and the encrypted subkey index to s:

E(ke, v, fts|O|E(Ke, , 7i))|MAC

agi — s
ag; — S

B — ag

ag — s

With this information, s can securely receive OHC num-
ber O, the subkey ks ,;, and authenticate ag. The aggre-
gator ag also unicasts the new routing tables to the nodes
who need to route s’s data, and the nodes who need s to

route their data. For s to join a subgroup that is multiple
levels down from base station, each level’s aggregator needs
to forward s’s request message to its upper level aggregator,
until the message reaches the base station. When the base
station sends the ACCEPT information, it sends the upper-
most level subkey of s, and each aggregator will generate
the subkey of s at that level. Finally, s can get its subkey
shared with its subgroup aggregator ag. This solution is
not efficient, and not very secure. For example, the DoS at-
tack can be launched by forging join request. More efficient
and secure mechanisms to support a node joining and node
leaving from a sensor group are part of our future work.

6. PERFORMANCE EVALUATION

To evaluate the performance of security support of in-
network processing, we have simulated a prototype on ns2
[29], and implemented cryptographic primitives (one-way
hash chain generator and MAC) on Berkeley motes [10].
Network setup overhead, performance of data aggregation
and command dissemination, and storage requirements for
an aggregator are measured from the simulated prototype,
while computation and memory requirements for crypto-
graphic algorithms are measured from the implementation
on motes.

6.1 Network Setup Overhead

To measure the overhead of network setup, we constructed
a multi-level hierarchical WSN as shown in Figure 6(a). We
placed the base station in the center of the network com-
prised of 250 sensor nodes. The network was first divided
into four top-level sensor groups (H1: one-level hierarchical
WSN). In a two-level hierarchical WSN (H2), each top-level
sensor group was further divided into four second-level sen-
sor groups (4+16 aggregators). In a three-level hierarchi-
cal WSN (H3), each second-level sensor group was further
divided into four third level sensor groups (4+16+64 ag-
gregators). The area covered by all sensor groups at any
particular level was assumed to be same, and the position
of an aggregator was chosen to be in the center of its sensor
group. We experimented with multi-level hierarchical WSN
scenarios: H1, H2, and H3. Figure 6(b) shows the network
structure of H1, H2, and H3.

Network setup involves three rounds of message exchanges
as discussed in Section 5. We have measured the number of
packets exchanged to set up a multi-level hierarchical net-
work in H1, H2, and H3. The number of packets is counted
hop by hop. For example, if a packet takes 3 hops to the
base station, it is counted as 3 packets. The size of the sim-
ulated packet was 36 bytes of which 29 bytes were used for
data. This corresponds to the packet size of Berkeley motes
[34] with link-layer security [35]. Messages in round 2 were
segmented into multiple packets. For each test, we randomly
generated 50 network topologies. The numbers reported in
figure 7 are corresponding averages.

Figure 7 shows the number of packets needed to set up
H1, H2, and H3. The overall network overhead increases
with the number of levels, and hence the number of sensor
groups. Network overhead increases in rounds 1 and 2 and
decreases in round 3 with increasing number of levels. The
reason for the increase in network overhead in round 1 is
that round 1 is repeated at each level. Recall that round 1
consists of a yTESLA broadcast. While the number of pack-
ets exchanged in this broadcast protocol does not depend on
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Figure 6: A three-level WSN.

the number of sensor groups at a single level, each aggrega-
tor needs to do it to set up smaller sensor groups with in its
sensor group. The reason for the increase in network over-
head in round 2 with the number of levels is the increase in
the total number of sensor groups. Recall that the base sta-
tion sends a separate unicast message to each aggregator in
level 1 sensor groups, aggregators at level 1 send a separate
unicast message to each aggregator in level 2 sensor groups,
and so on. Finally, the reason for the decrease in network
overhead in round 3 with increasing number of levels is the
smaller-sized area of each individual sensor group. When
the number of sensor groups is large, the size (area) of each
sensor group is small. As a result, the unicast messages sent
by an aggregator to the sensor nodes in this round take fewer
number of hops on average. The important point to notice is
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Figure 7: Network setup overhead.

that the overall network setup overhead is relatively small.
As we will see in the next set of experiments, this overhead
is easily offset by the reduction in the number of packets
that in-network processing provides subsequently.

6.2 In-Network Processing Performance

To measure the performance of in-network processing we
conducted an experiment in which all sensor nodes report
sensor data to their respective aggregators, each aggregator
computes a single sensor value (MIN, MAX, average, etc.)
from these sensor data received from its group members,
and forwards it to its aggregator, and so on. Figure 8 illus-
trates the performance measured from this experiment. The
network setup in this experiment is same as in Section 6.1.
The graph plots the total number of packets exchanged in
the network as function of the number of messages (sensor
data) sent by each node. Numbers reported in this graph
include the packets exchanged as a part of the initial net-
work setup. For comparison, we have also included the total
number of packets exchanged if there is no hierarchy in the
WSN.
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Figure 8: Performance of In-Network Processing.

Although the last experiment shows that there is a fair bit
of traffic for setting up the keys, one way hash chains, and
forwarding tables to build a group, it is clear from this graph
that in-network processing results in a significant reduction
in the number of packets exchanged. While the overhead
due to initial network setup results in more packets being
exchanged at first in multi-level WSN compared to no hi-
erarchy, in-network processing consumes less network band-
width after just a small number of sensor reports, e.g. after
just 5 or 6 sensor data packets reported. Another observa-
tion is that by increasing the number of levels, the number
of packets exchanged decreases. However, the rate of this
decrease diminishes for larger number of levels. For exam-
ple, there is very little difference in the number of packets
exchanged between two-level and three-level WSNs.

6.3 Aggregator Storage Requirements

An aggregator needs to store various cryptographic keys
(ripple keys, subkeys), one-way hash chain, and topology in-
formation of its sensor group. Memory required to store a
one-way hash chain is typically small, because not all num-
bers in the chain need to be stored. Similarly, since the num-
ber of ripples in a sensor group is expected to be low, the
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storage requirement for storing ripple keys is also low. On
the other hand, the storage requirement for storing subkeys
and topology information increases with the sensor group
size (number of nodes). We have measured this requirement
for a number sensor group sizes. We maintained the same
network density in all sensor groups. For each group size,
we randomly generated 50 different networks. A subkey was
assumed to be 8 bytes long. To store topology information,
an aggregator stores the identity of all neighbor nodes for
each sensor node.
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Figure 9: Aggregator Storage Requirement.

Figure 9 plots the memory required in an aggregator as a
function of the number of nodes in its sensor group (group
size). We observe that storage requirements for storing pair-
wise shared keys and topology information increases linearly
with group size. Suppose there are n nodes in a group, the
storage required to store pairwise shared keys is 8n bytes.
Because the density was the same in all networks we exper-
imented with, the storage requirement for storing topology
information was also linear.

A Berkeley mote has 4 KB RAM and 512K EEPROM.
Since network topology information is not always needed, it
can be stored in EEPROM. If the size of the lowest level sen-
sor group is about 100 nodes, its aggregator will have enough
space to save the subkeys in RAM. For the top level aggre-
gator, although it has shared subkeys with all down stream
nodes, it interacts only with direct down stream aggregators
most of the time. So, it can save most of the shared subkeys
that are only occasionally needed in EEPROM.

6.4 Aggregator Command Dissemination

As discussed in Section 4, there are two mechanisms an
aggregator can use to send a command to all nodes in its
sensor group. One is to use yTESLA and the other is to
use ripple keys. We have measured the number of packets
exchanged to disseminate a command using these two mech-
anisms for different sensor group sizes with the same density.
Figure 10 shows the result. For comparison, we have also
included the number of packets exchanged if the aggregator
sends a separate unicast message to each node instead.

The figure shows that both gTESLA and ripple key ap-

proaches incur much less overhead than the unicast approach.

The ripple key approach outperforms yTESLA for the small
network sizes we experimented with. Thus the ripple key
approach requires smaller number of packet exchanges than
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Figure 10: Performance of Aggregator Command Dis-
semination.

Table 1: Computation and Memory Requirements
of Cryptographic Algorithms.
| [ OHC [ CBC MAC [ Total |

Speed (ms) 4.18 2.22
Code (Bytes) | 1678 1738 | 1948
Data (Bytes) 136 128 264

pTESLA. Further advantages of the ripple key approach are
that it does not require any time synchronization, and does
not suffer from delayed key release, which will increase the
total time required to disseminate commands. However, if
the group size is significantly large, the pyTESLA approach
will result in smaller number of packets exchanged.

6.5 Resource Requirements of Cryptographic
Algorithms

We have implemented the cryptographic algorithms for
generating a one-way hash chain and message authentication
codes (MAC) using RC5 on Berkeley motes. Motes have a
4MHz processor with 128K flash memory, 4K RAM, and
an RFM monolithics TR 1000 radio at 19.2Kbps. We used
standard CBC mode for generating MACs. To generate a
one-way sequence number chain K,, K,_1, ... Ko, we used
the following algorithm. The base station first chooses a
random key K, and encrypts a well-known plaintext using
this key. The resulting cipher is K;,_1, which is then used
to generate K,_» similarly. This process continues until Ko
has been generated.

Computation and memory usage of these algorithms are
shown in Table 1. These measurements show that the com-
putation and memory requirements of the cryptographic al-
gorithms needed to build a hierarchical WSN and support
in-network processing are fairly low, and can easily be sup-
ported by current sensor nodes such as motes. The program
of cryptographic algorithms occupy about 2K flash memory,
and they use 264 bytes of RAM for data storage.

7. RELATED WORK

Sensor network security is a critical issue in sensor network
research [27]. S. Slijepcevic et. al [33], A. Wood and J. A.
Stankovic[36], C. Karlof and D. Wagner[14] provide survey
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papers for secure sensor network routing, and discuss many
attacks on WSNs. The TinySec[35] project provides link
layer security support for Berkeley motes. We referred to
the RC5 library of TinySec for our experiments.

In the field of ad hoc wireless networking, previous work
on secure routing employs public key cryptography to per-
form authentication [22][15][32][27]. Unfortunately, resource
constraints in WSNs limit the applicability of these current
public/asymmetric key standards.

A. Perrig et. al[30] address secure communication in re-
source constrained sensor networks, introducing two low-
level secure building blocks, SNEP and pTESLA. The one-
way hash chain in our paper is inspired by pTESLA. D.
Liu and P. Ning[20] propose an efficient distribution of key
chain commitments for pyTESLA. Multi-layer one-way hash
chains are proposed for one-way hash chain generation and
maintenance in WSNs. Our paper proposes that the base
station sends a one-way hash chain to the aggregator to
commit authority and enable the aggregator to control its
subgroup. Our approach only utilizes yTESLA for boot-
strapping the initial number during the setup phase of each
subgroup. Both one-way hash chains and ripple keys are
employed to secure aggregator commands. This scheme is
more efficient than pTESLA for the small subgroups since
neither time synchronization nor a delayed release key are
required. As far as we know, our approach is the first to
address building security mechanisms for hierarchical sensor
networks with in-network data processing.

J. Deng, R. Han and S. Mishra [7] propose INSENS in-
trusion tolerant routing for WSNs. INSENS employs mul-
tipath routing to tolerate intrusions to the sensor network.
INSENS proposes to use one-way hash chains, instead of
uTESLA, to authenticate the network setup messages. Our
approach to secure in-network processing is agnostic to the
underlying routing scheme, and can build on top of INSENS’
secure routing scheme.

L. Lazos and R. Poovendran[21], and D. Bruschi, E. Rosti
[38] proposed secure multicast for wireless networks. [21]
proposed an energy-efficient way of building secure multicast
groups for resource-constrained wireless networks. Since our
work has not addressed the problem of nodes joining and
leaving from a sensor group, our interest is to apply such
secure multicast techniques to enhance our future work on
secure data dissemination.

8. CONCLUSION AND FUTURE WORK

We have described the design and implementation of a
secure, hierarchical wireless sensor network that provides
support for secure in-network processing. Our approach del-
egates trust to aggregators within the network and enables
each sensor node within an aggregator’s subgroup to trust
its aggregator parent. This is accomplished via a collec-
tion of techniques, including a novel method for delegating
authorization using one-way hash chains and the yTESLA
protocol, light-weight shared key establishment, and a novel
ripple command dissemination method. We have simulated
the proposed network architecture in ns2 and experimented
with it under different computing scenarios. We have also
implemented some of the proposed protocols on a WSN com-
prised of Berkeley motes. Performance evaluation from the
prototype simulation and implementation shows that the
proposed design and protocols for secure in-network process-
ing provide good performance and are lightweight in their

resource requirements.

Recently, L. Eschenauer et.al [9], and H. Chan et.al [5]
proposed several random key pre-distribution mechanisms
for distributed key management in sensor networks. These
mechanisms operate without the cooperation of a base sta-
tion. In the future, we plan to adopt such schemes to design
secure, efficient, and DoS attack resistant support for sen-
sor nodes to join or leave a subgroup. In addition, we plan
to reduce computation load on the base station, as well as
communication traffic between the base station and aggre-
gator nodes, by applying random key pre-distribution mech-
anisms. Finally, we plan to integrate our security support
for in-network aggregation with some popular in-network
aggregation platforms such as TinyDB.
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