
Implementing the TEA algorithm on Sensors

Shuang Liu
Department of Computer

Science
The University of Alabama

Box 870290
Tuscaloosa, AL 35487-0290

sliu@cs.ua.edu

Olga V. Gavrylyako
Department of Computer

Science
The University of Alabama

Box 870290
Tuscaloosa, AL 35487-0290

ogavrylyako@cs.ua.edu

Phillip G. Bradford
Department of Computer

Science
The University of Alabama

Box 870290
Tuscaloosa, AL 35487-0290

pgb@cs.ua.edu

ABSTRACT
Sensors are tiny computers with limited computational ca-
pability and physical resources. The implementation of se-
cure protocols for sensor network is a big challenge. In order
to provide high security for sensor networks, it is very im-
portant to choose a small, efficient and effective encryption
algorithm as a security primitive. The TEA (Tiny Encryp-
tion Algorithm) is an efficient algorithm that requires little
memory and resources. These features make the TEA a
good candidate for security mechanism for sensors.

In this paper we describe an implementation of the TEA
algorithm on the platform of sensor networks (Berkeley Motes).
In our experiment, the data packets obtained from photo
and temperature sensors are encrypted on the sensor node
using the TEA algorithm. After that, they are sent to the
base station by radio. The base station will receive the data
packets and forward them to attached PC, where the data
packets are decrypted and displayed. We also propose a par-
ticular approach to efficiently evaluate the performance of
the TEA in terms of execution time on sensor nodes.

Keywords
Sensor network, Motes, TinyOS, TEA, Security

1. INTRODUCTION
Recent progresses in wireless networking technology and

micro-electro-mechanical systems lead to the emergence of a
new product in the post-PC era - networked sensors. Sensor
networks with ad-hoc configurations and programable sen-
sors will be widely used in a variety of scenarios. Futurists
even envision that thousands of ultra-tiny sensors would be
embedded into environment using the environmental energy,
assisting people to acquire more physical information [2].

The unusual applications of sensor networks require each
sensor to be highly miniaturized in terms of physical size,
power consumption and individual price. This will present
some design challenges that the intelligent applications are
to be built on the platform of the limited amount of mem-
ory, the shortage of computing power and a stringent radio
transmission bandwidth.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACMSE ’04,April 2-3, 2004, Huntsville, Alabama USA
Copyright 2004 ACM 1-58113-870-9/04/04...$5.00.

However, it is not surprising that security is required in
many applications when transmitting sensitive data over the
vulnerable broadcasting sensor network. A third party can
receive and tamper raw message packets if there is no se-
cure mechanism to protect the transition. Several protocols
related to authentication, confidentiality and secure rout-
ing were presented in [5, 7]. Generally, all the security
strategies are based on the underling cryptographic primi-
tives. To implement these security protocols on the resource-
constrained sensors, appropriately choosing efficient encryp-
tion algorithms is a major issue.

2. SECURITY IN SENSOR NETWORK
In the sensor network, sensors are organized into the spe-

cific configuration to satisfy the requirements of ad-hoc ap-
plications. Unfortunately, the connectivity can not remain
stable at any working time. And the sensor network is a
broadcast network, in which any signal can be captured by
adversaries. These features make wireless ad-hoc sensor net-
works more vulnerable than wired networks. This presents
real challenges in the implementation of the following secu-
rity requirements [5].

Data confidentiality: The transmission of sensitive data
should be protected for both sender and receiver in the sen-
sor network. The typical approach to achieve this is to
encrypt data using keys that are held by the receiver and
sender.

Message authentication: This mechanism can ensure
that received data is really sent by a claimed sensor. With-
out authentication, malicious data can be injected, destroy-
ing the whole network.

Data integrity: Due to the broadcast medium in sensor
networks the message packet might be tampered by an ad-
versary during the transmission. Some mechanisms must be
provided to detect altered packets and protect data integrity.

Due to inherent constraints on sensor node, there is a
trade-off between security and the consumption of resources.
If an application is designed to protect data more securely,
the higher overhead has to be paid in the computing and
communicating resources.

The majority of existing algorithms cannot be implemented
to secure the system. During the running time, the overhead
caused by complex encryption algorithms would greatly in-
fluence the performance of other processes in the opera-
tion system. On such a capability-restrictive and overloaded
platform [6], only a small fraction of computing and memory
space can be devoted to cryptographic algorithms. Thus,
some inexpensive encryption algorithms are the candidates
for being implemented on sensors.

In [4], the authors surveyed several inexpensive encryption

64

algorithms based on simplicity and efficiency. Those algo-
rithms include both symmetric and asymmetric encryption
algorithms. In asymmetric cryptography, the cost of gen-
erating public and private keys is relatively high. It is not
so suited to the resource-constrained sensor network. Sym-
metric cryptography is much cheaper, so it may suffice for
the sensor network with physical security [4]. In the sen-
sor network that lacks physical security, the mechanism for
the key management could supplement the shortage of key
compromise inherently in the symmetric cryptographic [5].

3. THE TEA ALOGRITHM
British researchers from Cambridge University proposed

extremely simple encryption algorithm, the TEA (Tiny En-
cryption Algorithm) [8]. It based on an alternative applica-
tion of a large number of iterations with XORs and addi-
tions, rather than on preset tables. So it can achieve better
performance with smaller code size and less complexity than
standard encryption algorithms[3]. The author claimed that
the TEA is three times faster than popular encryption algo-
rithms such as DES.

The TEA encrypts 64 data bits at a time using a 128-bit
key, which is the strongest encryption so far. The TEA uses
a 128-bit master key K[0..3] and derived subkeys. The Key
schedule is simple. Odd rounds use K[0,1] as the round sub-
key, and even rounds use K[2,3]. Originally designed for 64
bit plaintext blocks, later the TEA was extended for larger
block sizes, in which the iterative times and key scheduling
are slightly changed.

In SPINS [5] the authors implemented encryption on resource-
constrained devices using RC5 encryption algorithm. How-
ever, the TEA is much more efficient in terms of static size
and running time consumption. Although the result of thor-
ough scrutiny of the TEA has been unknown in cryptana-
lysts, we still explore the applicability of the TEA in our
experiment. Its extra-ordinary simplicity and efficiency are
very important features for potentially miniaturized hard-
ware. Moreover, the size of message packets in specific sen-
sors is often fixed, so it is more acceptable to view each
message packet as data chunk and use the Block TEA algo-
rithm to encrypt the packet.

4. MOTES HARDWARE AND TINYOS
The sensor network is a novel research field appearing

recently. Its unusual requirements present unconventional
design issues in the hardware infrastructure and software
system. In the following section, these problems are briefly
discussed.

4.1 Mote Hardware
Sensors used in this project are based on ATMEGA128L

micro-controller [1]. It is slightly larger and more powerful
than sensors in real applications, but they have the com-
monly important characteristics representing real networked
sensors. In more details, experimental sensor Mote has fol-
lowing components:

• The processor is the ATMEL 90LS8535 (4 MHz), which
is a 4MHz Harvard architecture with 8-bit addresses.
It has 128-Kbyte program flash memory, 4KB SRAM.
It operates at 4 MHz and 3.0V, and contains inter-
nal timers/counters. The 90LS8535 contains a UART
controller that is connected to a base station host com-
puter’s serial port. It has three sleep modes: idle,
power down, and power save, which can reduce the
energy consumption at the idle time of processor.

• Three LEDs can output analog signals through I/O
port. They may be used as an approach of debugging.

• Radio component consists of RF Monolithics 916.50
MHz transceiver, antenna and a collection of physically
configuring components. The transmission distance is
500 ft.

• Coprocessor

• Sensor board provides temperature sensors, light sen-
sors, thermometer and microphone.

4.2 TinyOS Platform
TinyOS is an event-driven operating system designed specif-

ically for Motes [1, 5]. Like conventional operating systems,
TinyOS seeks to provide abstractions of physical devices and
implementation of common functions to reduce the burden
of application development. However, due to the challenges
related to sensors, TinyOS has its own exceptional features.

4.2.1 Software Architecture
TinyOS deals with novel requirements. The system is re-

quired to be able to handle information flows fluently on a
hardware platform without sufficient buffering. So TinyOS
was presented to manage the hardware capabilities effec-
tively, and support concurrency-intensive operations in a
manner that it can achieve efficient modularity and robust-
ness. The main focus of TinyOS is to provide a rich expres-
sion of concurrency within limited resources. TinyOS has
chosen an event-based model that was borrowed from par-
allel and distributed computing systems. This model pro-
vides an advantage that high levels of concurrency can be
handled in a very small amount of space by allowing inde-
pendent components to share a single execution context. A
complete TinyOS consists of a tiny scheduler and a graph of
components. The tiny scheduler uses simple FIFO strategy
and it is also power-aware. It can dynamically shut down
and wake up the whole system when the number of tasks in
the task queue is changed. A number of hierarchical com-
ponents construct the whole infrastructure of TinyOS. The
physical hardware represents the lowest level of components.
Within each component, there are four interrelated parts:

• A set of command handlers (synchronous function call)

• A set of event handlers (asynchronous function call)

• A fixed-size frame (memory)

• A bundle of tasks (executable programs)

Each component declares commands it issues or receives
and events or signals it handles. The components in the
system are able to interact with each other through inter-
faces. Higher-level components issue commands to lower
level components and lower level components signal events
to the higher-level components. So for a programmer, it is
easy to connect high-level components with TinyOS by sim-
ply following the interface standards required by TinyOS.

4.2.2 Message Processing Sequence
In a sensor network, a number of sensor nodes are tied to-

gether by radio connection. Each sensor has a set of system
components, which are able to collaborate with each other
to perform a particular task. Figure 1 shows the typical op-
erational chain of internal components in TinyOS. Figure 1
is based on a figure in [2].

A timer event initiates the sensing application component
to start periodical data collection. When data is collected,

65

Figure 1: Message Processing Sequence in TinyOS.

the send message command is issued to initiate the trans-
fer. This command produces a chain of commands and
events in the underlying components. When message is suc-
cessfully broadcast over radio, the Active Message compo-
nent sends the msg send done event to inform the high-
level application component that the transmission task is
done.

5. IMPLEMENTATION AND EVALUATION
On the hardware and software platform described in Sec-

tion 5.1 and 5.2, we implemented the TEA algorithm. Based
on this simple and basic security application in our exper-
iment, more sophisticated security strategies and protocols
can be built.

5.1 Experiment Description
The main goal of our experiment is to investigate the ap-

plicability of the TEA implementation on Motes and to mea-
sure its running time. We basically focus on the aspect of
implementation, so there are no complicated security pro-
tocols in our application. We also eliminated routing func-
tionality.

Therefore, the infrastructure of sensor network in our ex-
periment is straightforward. There is only one sensor node
and one base station forming a simple sensor network. The
base station is connecting with a host PC through serial
port. We should guarantee that the sensor is always in the
radio range of the base station, so that loss rate of packets
should be maximally reduced. For the simplicity of the im-
plementation, the initial key of the TEA is a fixed 128-bit
number, which is given initially, and never changed during
the experiment.

We implement the TEA algorithm on the sensor node, and
encrypt data collected from photo and temperature sensors.
Then, the encrypted data are encapsulated into packets and
sent to the base station. Upon receiving a packet, the base
station directly forwards the packet to attached PC, where
the decryption algorithm is running to decode packets and
display it onto the screen.

In order to measure how much time the TEA spends to
encrypt message on TinyOS we propose a special approach.
Just before the TEA algorithm begins to run on the sensor
node, we record the current system time T1, and start the
algorithm. When the execution of the algorithm gets closed,
we record another system time. Obviously, the difference
of two time records will be the running time of the TEA
algorithm. So the simplest way to accomplish this is to
timestamp the two messages that are immediately prior and

posterior to the execution of the TEA, and calculate the time
interval for the running time of the TEA. However, there are
some practical issues we have to deal with.

Considering the lack of the precise timer in a sensor and
concurrency-intensive nature of the sensor network, techni-
cally it is very hard to precisely control the clock in a sensor.
The sensor would probably give the wrong time stamp due
to the processing delay. So the approach using time stamp
in a sensor is not feasible in our experiment. However, the
clock in the host PC is more precise and it is also more
powerful, so the timing process should be set up on the base
station.

In our approach, after a sensor finishes collecting data, the
sender sends out a beginning synchronous signal to the base
station. This signal is used to inform base station to start
the timer. Similarly, we have to use other type of message
to end timing. But, since we broadcast the encrypted data
immediately after the time that encrypting process ends, the
data packet is a good signal to stop timer on the host PC.

T encrypt
start : Starting time on the first sensor with TEA.

T encrypt
end : Stopping time on the first sensor with TEA.

∆T1 = T encrypt
start − T encrypt

end (1)

However, ∆T1 is not a precise time span that sensor spends
on the TEA. Some system processing overhead, such as
interrupting process and transmission procedure would be
added to ∆T1, thus increasing the value ∆T1. In order to
get more accurate time span, we need a new method to
offset the time span taken by the system process. So we in-
troduce the second identical sensor node that performs the
same functionality as the first sensor, but we do not have
the TEA algorithm running on the second sensor node.

Tstart: Starting time on the second sensor without TEA.
Tstop: Stopping time on the second sensor without TEA.

∆T2 = Tstart − Tend (2)

Since all experimental platforms are the same, the system
overhead for the second sensor node should be same as the
overhead for the first one. So the time span that the TEA
algorithm spends on TinyOS can be calculated by the fol-
lowing formula:

∆TTEA = ∆T1 −∆T2 (3)

According to above experimental description, there are three
types of software we should develop:

• The software on the sensor node. It is a high-level
application on TinyOS written in NesC. It operates
with Motes hardware to perform the functionalities of
sensing data, sending data and encrypting data.

• The software on the base station. It collects pack-
ets from the sensor node over radio and forward the
raw data packets directly to the PC machine attached
through serial port. It is also a TinyOS program.

• The software running on host PC, which is responsible
for displaying received data on the screen and comput-
ing the time span of the TEA running time.

5.2 Message Packet Specification
Our experiment uses two types of message packets. Each

time when we want to start measuring the running time of
the TEA, the sensor node will send a synchronous message
packet to the base station. It is only used as a starting

66

Figure 2: The format of the data message packet

Figure 3: The format of synchronous message packet

signal, carrying no other data. The Data message packet
immediately follows the synchronous message packet. The
data message packet contains the temperature and photo
data encrypted using the TEA algorithm.

Generally, the message packets in our experiment are sim-
ple, because we only test the performance of the TEA run-
ning on sensor node, instead of transmitting complicated
information. Figure 2 represents the format of data mes-
sage packet. The message packet used in our experiment
is similar to the original message packet of TinyOS, which
has five-byte header, payload of 29 bytes and two-byte CRC.
We do not change the header of the TinyOS packet format.
Due to convenience of applying the Block TEA encryption,
we reduce the length of payload to 28 bytes and do not use
CRC bytes. Additionally, in the data payload part, we use 4
bytes for the photo data and temperature data sensed from
underlying hardware sensors. The rest of the space in the
data payload is filled with 0. The format of synchronous
message packet is illustrated in Figure 3. Similarly, the first
five bytes are the header of the packet. In order to con-
trol the sequence number of the packet, we add 4 bytes in
data payload for the counter information. The counter is
incremented by one for each time the synchronous message
packet is broadcast.

5.3 Sensor Software Implementation
Programming on TinyOS is component-based. The only

thing we need to implement is to write our own components
and wire them with the existing components that can per-
form some functionality using the specific protocol. In the
software of sensor node, there are six components we will
use:

• Main Component. It is a system component dealing
with the basic control of the whole sensor, such as
initializing a sensor node and starting processing.

• FairyM component. This component is implemented
by us. It performs main functions such as collecting
data, encrypting data, and sending data. It lies in the
highest level of the OS.

• Comm Component. All radio communication is han-
dled by this system component, which can issue send-
ing commands and receiving returning events to notify
the upper-level components that the sending proce-
dure is done.

• PhotoTemp Component. This system component in-
teracts with the underlying hardware of photo and

Figure 4: Sequence of interaction in components of
sensor.

temperature sensor, so that the Photo and tempera-
ture data can be appropriately collected into the buffer.

• LedsC Component. In order to display the working
state of a sensor, this component can issue command
to control Leds on the sensor board

• TimerC Component. Since all processing work begins
from the timer event, the TimerC system component
is mainly responsible for handling timer events.

Figure 41 is the interactive sequence diagram. It shows the
details of interaction among software components.

Initially, all operations are started by the system initializa-
tion command. After all components are initialized, TinyOS
will give out a system starting command to the FairyM com-
ponent, which is the central control of the application. Then
the initialized timer connected to the hardware clock will pe-
riodically produce a timer event. Within a period between
two timer events, processes of collecting data from hard-
ware sensor, data encryption, synchronous signal sending,
and sending data by radio, are to be done in a manner that
one component issues the commands to other components
and signals events to the corresponding components when
some conditions are satisfied. The whole sequence is run-to-
end, that is, they never stop until the power is shut down.

In order to accurately measure the running time of the
TEA, we should guarantee that the message packet collected
from photo and temperature sensors is broadcast to base
station without much delay. However, task in TinyOS, when
executed, would be interrupted by other event handlers, thus
disturbing the sequence of interaction. So in our experiment,
we directly implement the TEA algorithm in the message
handler functions, rather than creating a task component to
encrypt the message packet.

1This is the interactive sequence on the sensor node that
encrypts message. If the encrypting operation is removed
from the interactive sequence, it can be implemented on the
second sensor node as a comparison.

67

Figure 5: The sequence of interaction in the compo-
nents of base station

5.4 Base Station Software Implementation
The base station captures all the packets that it can hear

and transfer them to the attached PC through serial port.
The base station acts as a bridge connecting resource-constrained
sensor node with more powerful computer. Hence there are
at lease two types of components we need to use for base
station software. One is used to handle the communica-
tion with sensor node over radio. Another is to control the
UART and forward packets. We implement the base sta-
tion software using five components based on the platform
of TinyOS:

• Main component. Its functionality is the same as the
Main component in the sensor node.

• GenericBaseM component. We create this high-level
component for central control of the whole system.

• RadioCRCPacket component. It is used to handle ra-
dio packets received from underlying hardware.

• UARTNoCRCPacket component. The process of for-
warding packets is done by this component.

• LedsC component. It is the same as the LedsC com-
ponent in sensor node.

Figuure 5 illustrates the interaction between components.
Similar to the implementation in sensor node, in the base

station the processing begins from the initializing command
issued by Main component. After initialization, the system
becomes idle. It detects any messages from radio compo-
nent to wake it up. When a message packet is detected
by the radio component, it sends an event notification to
the GenericBase component, which in turn, requests UAR-
TNoCRCPacket component to forward the data to host PC
through serial port. When forwarding is over, the UAR-
TNoCRCPacket component gives back a Send Done event
to high-level component: GenericBaseM. So the base sta-
tion software performs like a transmission gateway, allowing
message packets to flow from wireless sensor network to the
host PC.

5.5 PC Software Implementation
The goal of program running on the host PC is to collect

message packets and compute time spent by every sensor

to encrypt data. As we described in the previous section,
data message packets immediately follow the synchronous
message packets. The synchronous message packet provides
the starting time of the encrypting function on the sensor
node, and data message packets indicates the ending time
of the encrypting function. The program distinguishes these
two types of packets and extracts appropriate time interval
from them. The following are steps to process a message.

1. Receive a packet from serial communication port. The
short measuring time requires the program to efficiently
and accurately receive message packets and calculate
the time interval.

2. Recognize the type of message packet and perform the
corresponding operations. According to different type
of messages, the program will record the corresponding
time information into the T1 or T2 array. Then, the
data payload of the packet is decrypted and displayed.

3. When certain amount of packets is collected, the data-
collecting loop is stopped. Then we calculate time in-
terval using formula T2 -T1 for each item in the arrays.

Due to the inherent errors in the radio transmission and
restriction of motes hardware, the program should have ro-
bustness to the message loss. The program periodically re-
ceives two types of message packets. Only synchronous mes-
sage packet indicates that a new time-computing loop has
started. Therefore, only the data message packet with the
same counter information as the immediately previous syn-
chronous message packet can be accepted. In the implemen-
tation we use a Boolean and counter variable to guarantee
this appropriate arrival order. Thus, no matter how many
message packets are lost in the transmission, the process
of evaluating running time always begins from the first syn-
chronous message packet, and ends in the next data message
packet with same counter ID.

5.6 Experimental Results and Evaluation
As we described in Section 5.1, a large number of message

packets are periodically sent from sensor node to the host
PC in a certain frequency. When a message packet is sent
out, one working period is done and the next period begins.
All these operations in a working period are initiated by a
hardware timer event, which can interrupt other activities
in the system and lead to a new period of processing. So
we should guarantee that the working period should be long
enough to allow microcontroller to complete all processing
on message packets. If the working period is too short, the
message packet is not prepared for broadcasting before it
can be sent out by radio. Consequentially, the sequence of
message packets will be out of order. Thus we can not obtain
the accurate measurements.

Therefore, choosing the appropriate broadcasting frequency
on the sensor node is critical for this experiment. Figure 6
shows how the frequency of sending message influences the
measurement of time interval. X axis is the frequency of
message sending and Y axis indicates the average time in-
terval spent to receive 100 message packets. We can see that
the frequency from 20 Hz to 1 Hz does not notably influence
final measurement of time interval. The slight fluctuation
of the curve is caused by the internal change of computing
speed on the sensor node. So we can pick up any frequency
in the range from 20 Hz to 1 Hz in our experiment.

For the sake of validity and efficiency, in our experiment
we choose 2 Hz as our working frequency. So within 500
milli-seconds, all operations in one period will be performed.

68

Figure 6: Average time interval in different frequen-
cies

Figure 7: The measurements running the TEA

The data collected on the base station is a sequence of syn-
chronous packets and data packets. The evaluation of run-
ning time is done by computing time interval between two
types of message packets in one period.

In order to increase the accuracy of measurements, we
studied a sequence that contains 1000 working periods. First,
we took samples from a sensor node running the TEA al-
gorithm. Experimental results are illustrated in the Figure
7. X axis shows the period number from 1 to 1000, and
Y axis indicates measurements of time interval. Originally
we expect that this line should be an ideal horizontal line
without any fluctuation. However, as seen in the Figure 7
the line of measurements bounces from one period to an-
other. Many factors could lead to this variation, such as
the delay in radio transmission, the change in computing
ability of the microcontroller or internal errors in TinyOS.
Nevertheless all measurements are around the average time
interval consistently throughout the running. Base on these
data we compute the average time interval and use it as our
first parameter ∆T1 in the formula (3).

Figure 8: The measurements without the TEA

Similarly, Figure 8 shows the measurements of the se-
quence of 1000 periods on the comparison sensor node with-
out running the TEA algorithm. Let us denote the average
value of these measurements as ∆T2. So the overall running
time of the TEA algorithm on a sensor node is:

∆TTEA=∆T1-∆T2=46.507-32.419=14.088 millisecond

6. FUTURE WORK
Our approach of measuring running time of the TEA al-

gorithm works well on a simple sensor network that has only
one sensor and one base station. There are no complex inter-
active operations between sensors, such as large-scale rout-
ing, high-density communication and concurrency-intensive
process inside a sensor. In order to measure the performance
of encryption algorithm appropriately in a real application
environment, we need to build a large sensor network with
self-organized feature.

Additionally, in our experiment we use a globally shared
key on both sensor node and PC machine. The key is pre-
defined and never changed. The compromise of the sensor
or PC machine will compromise the entire sensor network.
Therefore, we need to implement an efficient strategy for key
management on sensor network, in which the new key for
participated node can be generated from the sensor master
key using a pseudo-random function.

7. REFERENCES
[1] Tinyos website. http://webs.cs.berkeley.edu/tos/.

[2] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler,
and K. S. J. Pister. System architecture directions for
networked sensors. In Architectural Support for
Programming Languages and Operating Systems, pages
93–104, 2000.

[3] Y. Kanamori, E. Jovanov, and S.-M. Yoo. Performance
comparison between tea and rijndale encryption
algorithm for wireless sensor networks. In ISCA 15th
International Conference on Computer Applications in
Industry and Engineering (CAINE), San Diego, pages
209–212, Nov. 2000.

[4] J. Liu, R. K. Smith, and P. G. Bradford. Inexpensive
encryption algorithms. In Proceedings of the 41st ACM
South East Regional Conference, pages 41–44, 2003.

[5] A. Perrig, R. Szewczyk, J.D.Tygar, V. Wen, and
C. David E. Spins: Security protocols for sensor
networks. In Proceedings of Mobile Networking and
Computing 2001, 2001.

[6] V. Subramonian, H.-M. Huang, S. Datar, and C. Lu.
Priority scheduling in tinyos c a case study.
Department of Computer Science, Washington
University, St. Louis. MO.

[7] TinySec. Tinyos link layer security proposal version 1.0.
http://www.cs.berkeley.edu/ nks/tinysec/design-
doc.pdf.

[8] D. J. Wheeler and R. M. Needham. Tea, a tiny
encryption algorithm. In Fast Software Encryption,
Second International Workshop Proceedings,
SpringerVerlag, pages 97–110, 1995.

69

