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Resources

• Random trip model web page:

http://ica1www.epfl.ch/RandomTrip

– Links to slides, papers, perfect simulation software

• This tutorial is mainly based on:

The Random Trip Model: Stability, Stationary Regime, and Perfect 
Simulation, ACM/IEEE Trans. on Networking, to appear Dec 06

– Extended journal version of IEEE Infocom 2005 paper

– Technical report with proofs: MSR-TR-2006-26 

http://ica1www.epfl.ch/RandomTrip
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Abstract
Mobility models play an important role for wireless and mobile systems as they are 
used widely for both mathematical and simulation-based evaluations. Even though 
some of mobility models are rather simple, such as for example well known 
random waypoint model, they often cause some subtle problems. For example, the 
annoying initial transience of node mobility state, and the decrease of node 
numerical speed to zero during a simulation run. Some of these issues were 
addressed in the literature on a case by case basis, often involving long and 
complicated computations, which blur understanding the roots of the experienced 
problems and ways to fix them. It is critical to perform simulations that are free of 
biases such as initial transience and avoid abnormal cases such as the speed 
decay to zero in order to produce fair comparative performance of protocols in 
mobile environments.
 
In the tutorial, we present random trip models, a broad class of random mobility 
models and review a large number of random trip model examples, such as for 
example, random waypoint on convex or non convex areas, restricted random 
waypoint, inter-city, space graph, boundary reflection and wrap-around models. 
Our first goal is to explain the trip conditions that define random trip mobility 
models and guarantee the model stability. The stability is in the sense of existence 
of time stationary mobility state and convergence of the node mobility state to a 
unique time-stationary state, from any initial node mobility state. Knowing such 
conditions is important in order to enable verification of stability of existing and 
new mobility models and by doing so, avoiding undesirable phenomena such as 
the aforementioned speed decay to zero. The stability conditions originate from 
the theory of continuous-time Markov processes on general state spaces; this 
framework is rather delicate but we explain the stability conditions in an easy way 
that suffices to apply them.

cont’d
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Abstract (2)

We further present perfect simulation algorithm that initialises node mobility state 
in a way that the state remains time-stationary throughout a simulation run - 
hence, perfect simulation. This is rather useful as it entirely alleviates the 
annoying initial transience of node mobility state. The algorithm does not 
necessitate knowing the mean trip duration for all trips, but it suffices to know a 
bound on the mean trip duration in cases when the mean trip duration is difficult 
to compute. This is rather relevant in practise as computing the mean trip duration 
typically involves computing geometric constants that are often hard to compute, 
while computing close bounds on the mean trip duration is often easy. We describe 
how to use the implementation of perfect simulation algorithm to use with ns-2 
that is freely available for download. This tool has been used by others in 
performance evaluations of some recent wireless and mobile systems.

We lastly discuss how random trip mobility model accommodates various mobility 
properties (some of which may be invariants of real-world mobility) such as, for 
example, recent empirical evidence that the distribution of human inter-contact 
times are heavy-tailed, long-range dependent models and their implications on 
simulation averaging, and parameter settings of node mobility to achieve a target 
time-stationary distribution of node location. We also point to some data resources 
to use with the model towards realistic mobility simulations. 

cont’d

http://icawww1.epfl.ch/randomTrip
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Abstract (3)

Audience

Researchers, systems people, and students who want to learn or better understand 
the state-of-the art mobility models, their stability, stationary regime, convergence 
properties, and perfect simulation. The attendees will learn the framework that 
defines random trip mobility models, which would enable them defining new 
mobility models with guaranteed stability and convergence properties, so as to 
avoid pitfalls such as for example experienced with random waypoint model. They 
will also learn how to run perfect simulations of random trip mobility models, which 
will be supported by demonstration of the software tool designed to use with ns2 
simulator. No special background is assumed, but some basic familiarity with 
applied probability. 
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Why this tutorial ?

• Mobility models are used for performance evaluation of mobile 
systems by many
– Simulations
– Maths

• Experience with simulations is intriguing
– Speed decay: average speed decays with simulation time
– Initial transience: different initial and long-run distributions 

• Origins of issues 
– Model definition (stability)
– Simulation technique (initial sample)
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Why this tutorial ? (2)

• Critical to adopt best simulation practices

– Make sure model is stable 
(avoid speed decay and similar abnormal cases)

– Run stationary simulations, if possible
(avoid annoying initial transience)
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Outline

• Simulation Issues with mobility models

• Random trip basic constructs

• A technical condition: Positive Harris recurrence

• Stability of random trip model 

• Time-stationary distributions

• Perfect simulation

• FAQ
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Outline

• FAQ

– Does model accommodate power-law inter-
contact times ?

– Does model accommodate heavy-tailed trip 
durations ?

– Can model produce a given time-stationary 
distribution of node position ?

– What are mobility data resources ?
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Outline

• Simulation Issues with mobility models

• Random trip basic constructs

• A technical condition: Positive Harris recurrence

• Stability of random trip model 

• Time-stationary distributions

• Perfect simulation

• FAQ
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Simplest example: random waypoint 
(Johnson and Maltz`96)

• Node:

– Picks next waypoint Xn+1 uniformly in area

– Picks speed Vn uniformly in [vmin,vmax]

– Moves to Xn+1 with speed Vn

Xn

Xn+1
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Already the simple model 
exhibits issues

• Distributions of node speed, position, distances, etc 
change with time
– Node speed:

100 users average

1 user

Time (s)

S
pe

ed
 (

m
/s

)
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Already the simple model 
exhibits issues (2)

• Distributions of node speed, position, distances, etc 
change with time
– Distribution of node position:

Time = 0 sec Time = 2000 sec
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Why does it matter ?
• A. In the mobile case, the nodes 

are more often towards the center, 
distance between nodes is shorter, 
performance is better

• The comparison is flawed. Should 
use for static case the same 
distribution of node location as 
random waypoint.  Is there such a 
distribution to compare against ?

Random waypoint

Static

• A (true) example: Compare impact 
of mobility on a protocol:
– Experimenter places nodes 

uniformly for static case, 
according to random waypoint 
for mobile case

– Finds that static is better
• Q. Find the bug ! 
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Issues with Mobility Models

• Is there a stable distribution of the simulation 
state (time-stationary distribution), reached if we 
run the simulation long enough ?

• If so: 

– How long is long enough ?

– If it is too long, is there a way to get to the 
stable distribution without running long 
simulations (perfect simulation) ?
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This tutorial: random trip model

• A broad model of independent node movements 
– Including RWP, realistic city maps, etc

• Defined by a set of conditions on trip selection

• Conditions ensure issues mentioned above are under 
control

– Model stability (defined later)

– Model permits perfect simulation 
• Algorithm in this slide deck 
• Perfect simulation = distribution of node mobility is 

time-stationary throughout a simulation 
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Outline

• Simulation Issues with mobility models

• Random trip basic constructs

• A technical condition: Positive Harris recurrence

• Stability of random trip model 

• Time-stationary distributions

• Perfect simulation

• FAQ
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Random trip basic constructs
 » Outline «

• Initially: a mobile picks a trip, i.e. a combination of 3 elements
– A path in a catalogue of paths
– A duration
– A phase 

• A end of trip, mobile picks a new trip 
– Using a trip selection rule
– Information required to sample next trip is entirely contained in 

path and phase of previous trip the trip that just finished 
(Markov property)
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Illustration of basic constructs
• At end of (n-1)st trip, at time Tn, mobile picks

– Path Pn

– Duration Sn =Tn+1-Tn

– (also a phase – see later )

– This implicitly defines speed and location X(t) at t 2 [Tn, Tn+1]

Time Tn

Path Pn

Time Tn+1

X(t) = Pn((t – Tn)/Sn), Tn ≤ t < Tn+1
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Random waypoint is a random trip model
• (Assume in this slide model without pause)

• At end of trip n-1, mobile is at location Xn 

– Sample location Xn+1 uniformly in area 

Path Pn is shortest path from Xn to Xn+1

Pn(u) = (1 - u) Xn + u Xn+1  for u 2[0,1]

– Sample numerical speed Vn ¸ 0 from a 
given speed distribution  

This defines duration: 
Sn = ||Xn+1 - Xn|| / Vn

• (Markov property): Information required to 
sample next trip (location Xn) is entirely 
contained in path and phase of previous trip

Xn

Xn+1

Speed Vn
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Random waypoint with pauses is a random trip 
model

• Phase In is either move or pause

• At end of trip n-1:

If phase In-1was pause then 

–  In = move (next trip is a move) 

– Sample Xn+1 and Vn as on previous slide

Else

–  In = pause (next trip is a move) 

– Path: Pn(u) = Xn for u 2[0,1]

– Pick Sn from a given pause time 
distribution

• (Markov property): Information required to 
sample next trip (phase In, location Xn) is 
entirely contained in path and phase of 
previous trip

Xn

Xn+1

Speed Vn

Xn = Xn+1

Pause time Sn
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Catalogue of examples

• Random waypoint on general connected domains
– Swiss Flag
– City-section

• Restricted random waypoint
– Inter-city
– Space-graph

• Random walk on torus

• Billiards

• Stochastic billiards
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Path Pn

Xn

Xn+1

Random waypoint on general 
connected domain

• Swiss Flag [LV05]
• Non convex domain
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Random waypoint on general 
connected domain (2)

• City-section, 
Camp et al 
[CBD02]
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Restricted random waypoint
• Inter-city, Blazevic 

et al [BGL04]
• Stay in one 

subdomain for some 
time then move to 
other

Here phase is
(In, Ln, Ln+1, Rn)

where
 
In = pause or move
Ln = current sub-
domain
Ln+1 = next subdomain
Rn = number of trips 
in this visit to the 
current domain
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Restricted random waypoint (2)
• Space-graph, Jardosh et al, ACM Mobicom 03 [JBAS03]
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Road maps available from 
road-map databases

• Ex. US Bureau’s TIGER 
database
– Houston section
– Used by PalChaudhuri 

et al [PLV05]
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Random walk on torus
• [LV05]
• a.k.a. random 

direction with wrap 
around (Nain et al 
[NT+05])
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Billiards
• [LV05]
• a.k.a. random 

direction with 
reflection (Nain et al 
[NT+05])
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Stochastic billiards
• Random direction 

model, Royer et al 
[RMM01]

• See also survey 
[CBD02]
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Random trip basic constructs
 » Summary «

• Trip is defined by phase, path, and duration

• The abstraction accommodates many examples

– Random waypoint on general connected domains
– Random walk with wrap around
– Billiards
– Stochastic billiards
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Outline

• Simulation Issues with mobility models

• Random trip basic constructs

• A technical condition: Positive Harris recurrence

• Stability of random trip model 

• Time-stationary distributions

• Perfect simulation

• FAQ
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An additional condition 

• We introduce an additional condition that is needed for 
stability of random trip to be well understood
– Positive Harris recurrence

• We check the condition for our catalogue of models
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The Additional condition

• Yn = (In, Pn) (phase, path) is a Markov chain by 
construction of the random trip model

– In general, on general state space ! 

– Not necessarily bounded or countable

• We assume that Yn is positive Harris recurrent 
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Positive Harris recurrence

• If the state space for the Markov chain of phases and paths 
would be countable (not true in general), this would mean
– Any state can be reached
– No escape to infinity

• A natural condition if we want the mobility state to have a 
stationary regime 

 
• On a general state space, the definition is more evolved 
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Harris recurrence

• It means that there exists a set R that is visited by Yn from 
any initial state in some given number of transitions

• The set R is “recurrent”

I × P

R y

Yn

plus …



  37

Harris recurrence (2)

• Probability that Yn hits a set B starting from R in some given 
number of transitions is lower bounded by β ϕ(B) 
� β is a number in (0,1), ϕ is a probability measure on I x P

• The set R is “regenerative” 

I × P

R

y B
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Positive Harris recurrence

• Yn Harris recurrent implies that Yn has a stationary measure
 π0 on I × P

– It may be π0(I × P) = +∞

• We need π0(I × P) < +∞ so that Yn has a stationary 
probability distribution

• We assume that Yn is positive Harris recurrent

– It means Harris recurrent plus that the return time to 
set R has a finite expectation
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Check the condition for random 
waypoint 

• For this model, it is easy

• It suffices to consider RWP with no pauses

• Note that any two paths Pn, Pm such that |n - m| > 1 are 
independent

• Hence

P(Pn ∈ A1 x A2 | P0 = p) = |A1| ⋅ |A2|, for all n > 1

• Take as the recurrent set R ≡ A x A
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Check condition for 
restricted random waypoint

The condition is true if

• In addition to assumptions for random waypoint, it holds
 
– The Markov walk on sub-domains is irreducible 
– And the mean number of trips within a sub-domain is 

finite

• Proof follows from well known stability results for Markov 
chains on finite state spaces
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Check condition for 
random walk on torus

The condition is true if

• The speed vector has a density in R2

• And, trip duration has a density, conditional on either 
phase is move or pause
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Check condition for 
random walk on torus(2)

• Main thing to prove is that node position at trip transitions, 
Xn, is Harris recurrent

• Fact: the distribution of Xn started from any given initial 
point, converges to uniform distribution, provided only that 
node speed has a density 

• Harris recurrence follows by the latter fact, Erdos-Turan-
Koksma inequality, and Fourier analysis
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Check condition for 
billiards

The condition is true if
 

• The speed vector has a density in R2 that is completely 
symmetric

• And, trip duration has a density, conditional on either 
phase is move or pause

• Proof by reduction to random walk (see [LV06])

• Def. A random vector (X,Y) is said to have a completely symmetric 
distribution iff (-X,Y) and (X,-Y) have the same distribution as (X,Y)
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To be complete …

• We also need to assume:

(a) Trip duration Sn is strictly positive

(b) Distribution of trip duration Sn is non-arithmetic

arithmetic = on a lattice

• These are minor conditions, can in practice be assumed to 
hold
– (a) is common sense

– (b) is true in particular if Sn has a density
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Outline

• Simulation Issues with mobility models

• Random trip basic constructs

• A technical condition: Positive Harris recurrence

• Stability of random trip model 

• Time-stationary distributions

• Perfect simulation

• FAQ
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Stability of random trip model
 » Outline «

• What do we mean by stability ?

• We give the stability result for random trip
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Stability

• Informally, the model is stable if the distribution of system 
state converges to something well defined, as the 
simulation time grows 

• If so:

– “The simulation reaches a stationary regime”

– There is a well defined time stationary distribution of 
system state that can be used for fair comparisons
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Stability (formal definition)
• System state     Φ(t) = (Y(t), S(t), S-(t)),   t ≥ 0

∀ Φ(t) has

– A unique time-stationary distribution π
– The distribution of Φ(t) converges to π as t goes to infinity

time elapsed on current trip(phase, path)

duration of current trip

Sn

S-(t)

0
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Stability of random trip model

• There exists a time-stationary distribution π for Φ(t) if and 
only if mean trip duration is finite (trip sampled at trip 
endpoints)

•  Whenever π exists, it is unique
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Stability of random trip model (2)

• Moreover, if mean trip duration is finite, from any initial 
state, the distribution of Φ(t) converges to π as t goes to 
infinity

• Otherwise, from any initial state the distribution of Φ(t) 
converges to 0 as t goes to infinity
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Application to random waypoint

• Mean trip duration for a move
= (mean trip distance) £ mean of inverse of speed 

• Mean trip duration for a pause
= mean pause time

• Random waypoint is stable if both

– mean of inverse of speed
– mean pause time

are finite
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A Random waypoint model that has 
no time-stationary distribution !

• Assume that at trip transitions, node speed is sampled 
uniformly on [vmin,vmax]

• Take vmin = 0 and vmax > 0 (common in practise)

• Mean trip duration = (mean trip distance)   

• Mean trip duration is infinite !

• Speed decay: “considered harmful” [YLN03]

+∞=× ∫
max

0max

1
v

v

dv

v
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Stability of random trip model
 » Summary «

• Random trip model is stable if mean trip duration is finite

• This ensures the model is stable
– Unique time-stationary distribution, and
– Convergence to this distribution from any initial state

• Didn’t hold for a random waypoint used by many 
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Outline

• Simulation Issues with mobility models

• Random trip basic constructs

• A technical condition: Positive Harris recurrence

• Stability of random trip model 

• Time-stationary distributions

• Perfect simulation

• FAQ
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Time-stationary distributions 
 » Outline «

• Time-stationary distribution of node mobility state is the 
distribution of state in stationary regime

• Should be used for fair comparison

• Can be obtained systematically by the Palm inversion 
formula

– Palm inversion formula relates event-stationary 
distribution at trip transition to time-stationary at 
arbitrary time
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Sampling bias
• Stationary distributions at arbitrary times and at trip end 

points are not necessarily the same
– Time-average vs event-average

• Ex. samples of node position for random waypoint
– Trip endpoints are uniformly distributed, time stationary 

distribution of mobile location is not
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Time-stationary distribution given 
by Palm inversion

• Relates time-averages to event-averages:

• Tn = a trip transition instant

• Time 0 is an arbitrarily fixed time 

• Convention: … T-1 ≤ T0 ≤ 0 < T1 ≤ … 












Φ=Φ ∫

1

0

0 ))(()))(((
T

dssfEtfE λ [ ]0
0/1 SE=λ

Time-average Event-average
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Example: random waypoint

• Consider random waypoint with no pauses

• By Palm inversion, we obtain the time-average speed is:

• It follows:

[ ] 1
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Time-stationary speed density Event-stationary speed density
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Example: random waypoint (2)
• Histogram of node speed 

sampled at trip transitions
• Histogram of node speed 

sampled at equidistant times
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Representation of time-stationary distribution
(any random trip model)

• Phase: 

where                           , i.e. mean trip duration given 
that phase is i

• Path and duration, given the phase:

• Time elapsed on the current trip: S-(t) = S(t)U(t), 
where U(t) is uniform on [0,1]

∑
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Time-stationary distribution for 
(restricted) random waypoint

• Node speed at time t is independent of path and location 
with density

• Path endpoints at time t, (P(t)(0),P(t)(1)) = (m0,m1) have 
a joint density:

• Conditional on (P(t)(0),P(t)(1))=(x,y), distribution of node 
position X(t) is uniform on the segment [x,y]

)(
1

 const)( 0 vf
v

vf V
V =

jijr AmmdK ×∈= i10 A)m,(m for    ),,( 10

• Conditional on phase is (i, j, r, move)
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The stationary distribution of random waypoint 
can be obtained in closed form [L04]

Contour plots of density of stationary distribution
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Closed forms
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Time-stationary distribution for 
(restricted) random waypoint (2)

• Node location X(t) and residual time until end of pause 
R(t) are independent

• X(t) is uniform on Ai

• R(t) has density

)(
1

 const)( 0 vf
v

vf V
V =

))(( | sF lS
l

01
1 −=
τ

• Conditional on phase is (i, j, r, pause)

Pause time distribution 
at trip transitions
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Time-stationary distribution for 
random walk on torus

• Node mobility state at time t 

= (I(t), X(t), V(t), R(t))

I(t) = phase, either move or pause

X(t) = node position

V(t) = speed vector (= null vector, if I(t) = pause)

R(t) = residual time until end of trip
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Time-stationary distribution for 
random walk on torus (2)

• Node location X(t) is uniformly distributed 

• P(I(t) = pause) =  τpause / (τpause + τmove)

• Conditional on I(t) = pause:
– R(t) density = (1-F0

pause(s)) / τpause

– X(t) and R(t) are independent

• Conditional on I(t) = move:
– V(t) has density f0

V (v)

– R(t) density = (1-F0
move(s)) / τmove

– X(t), V(t), R(t) are independent
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Time-stationary distributions
 » Summary «

• Palm inversion yields systematic characterization of time-
stationary distribution for any random trip model

• Closed-form expressions for time-stationary distributions 
may involve complex geometric integrals

– But we don’t need them to sample from the time-
stationary distributions (see next) 
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Outline

• Simulation Issues with mobility models

• Random trip basic constructs

• A technical condition: Positive Harris recurrence

• Stability of random trip model 

• Time-stationary distributions

• Perfect simulation

• FAQ
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Perfect simulation
 » Outline «

• Perfect simulation 
– Sample initial state from time-stationary distribution
– Then state is a time-stationary realization at any time

• Perfect sampling algorithm
– Uses characterization seen earlier
– Plus rejection sampling
– No need to compute geometric constants  
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Perfect simulation is highly desirable

• If model is stable and initial state is drawn from distribution 
other than time-stationary distribution
– The distribution of node state converges to the time-

stationary distribution

• Naïve: so, let’s simply truncate an initial simulation duration

• The problem is that initial transience can last very long

Example [space graph]: 
node speed = 1.25 m/s
bounding area = 1km x 1km
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Perfect simulation 
is highly desirable (2)

• Distribution of path:

Time = 
100s

Time = 
50s

Time = 
300s

Time = 
500s

Time = 
1000s

Time = 
2000s
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Perfect sampling algorithm for 
random waypoint

Input: A, ∆
Output: X0, X, X1

3. Do 
sample X0,X1, iid, ~ Unif(A)

sample V ~ Unif[0, ∆]
 
until V < ||X1 - X0||

4. Draw U ~ Unif[0,1]

5. X = (1-U) X0 + U X1

Input: A = domain, ∆ = upper bound on the diameter of A
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Example: random waypoint
No speed decay

• Standard simulation • Perfect simulation

S
pe

ed
 (

m
/s

)

S
pe

ed
 (

m
/s

)

Time (sec) Time (sec)
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Perfect simulation software

• Developed by Santashil PalChaudhuri
– see the random trip web page

• Scripts to use as front-end to ns-2
– Output is ns-2 compatible format to use as input to ns-2

• Supported models:
– Random waypoint on general connected domain
– Restricted random waypoint
– Random walk with wrapping
– Billiards
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Perfect simulation
 » Summary «

• Random trip model can be perfectly simulated
– Node mobility state is a time-stationary realization 

throughout a simulation

• Perfect simulation by rejection sampling
– It alleviates knowing geometric constants
– Bound on the trip length is sufficient



  76

Outline

• Simulation Issues with mobility models

• Random trip basic constructs

• A technical condition: Positive Harris recurrence

• Stability of random trip model 

• Time-stationary distributions

• Perfect simulation

• FAQ
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Frequently Asked Questions

• Does model accommodate power-law 
inter-contact times ?

• Does model accommodate heavy-tailed 
trip durations ?

• Can model produce a given time-
stationary distribution of node position ?

• What are mobility data resources ?



  78

Frequently Asked Questions

• Does model accommodate power-law 
inter-contact times ?

• Does model accommodate heavy-tailed 
trip durations ?

• Can model produce a given time-
stationary distribution of node position ?

• What are mobility data resources ?
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Power-law evidence
• Chaintreau et al 2006 [CHC+06]: distribution of inter-

contact times of human carried devices (iMote/PDA) is well 
approximated by a power law

• Source [CHC+06] with permission from authors

P
(T

 >
 n

)

P
(T

 >
 n

)

Inter-contact time n Inter-contact time n
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Power-law inter-contact times 
(cont’d) 

• Implications on packet-forwarding delay ([CHC+06])

Can random trip model accommodate power-law node 
inter-contacts ?

– Yes ! (see next example)

?
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Example: random walk on torus

•  Discrete-time, discrete-space of M sites

•  T = inter-contact time, E(T) = M

0
1

2

M-1

…

…
contact

3

4

5

M-2
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Example: random walk on torus (2) 

• Let first M → ∞ (infinite lattice)

     P(T > n) ~ const / n1/2,  large n    

– Holds for any aperiodic recurrent random walk with finite 
variance on infinite 1dim lattice, Spitzer [S64]

• If M is fixed, tail is exponentially bounded

• If n and M scale simultaneously ? (see next)

power-law
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Example: random walk on torus (3)
M = 50 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

5

10
0

Intercontact time
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P
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)
P
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Inter-contact time n
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Example: random walk on torus (4)
M = 500 

P
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What if random walk is 
on a 2dim torus ?

• Manhattan grid
• Ex [M87], [SMS06]
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What if random walk is 
on a 2dim torus ? (2)

• Finite torus: 500 x 500 (20M walk steps)
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Frequently Asked Questions

• Does model accommodate power-law 
inter-contact times ?

• Does model accommodate heavy-tailed 
trip durations ?

• Can model produce a given time-
stationary distribution of node position ?

• What are mobility data resources ?
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Heavy-tailed trip times

Can trip duration be heavy-tailed ? 
– Yes.

• Common in nature

– Albatross search, spider 
monkeys [KS05], 
jackals [ARMA02]

– Model: random walk with 
heavy-tailed trip distance 
(Levy flights) 

Levy flight (source [FZK93])

?



  90

Heavy-tailed trip times (2)

• Ex 1: random walk on torus or billiards

– Take a heavy-tailed distribution for trip duration with 
finite mean

– Ex. Pareto: P0(Sn > s) = (b/s)a,  b > 0, 1 < a < 2 

• Ex 2: Random waypoint

– Take fV
0(v) = K  v1/2 1(0 ≤ v ≤ vmax)

–  E0(Sn) < ∞, E0(Sn
2) = ∞
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Frequently Asked Questions

• Does model accommodate power-law 
inter-contact times ?

• Does model accommodate heavy-tailed 
trip durations ?

• Can model produce a given time-
stationary distribution of node position ?

• What are mobility data resources ?
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Given time-stationary 
distribution of node position

• Given is a random trip model with time-stationary density 
of node position aX(x)

Can one configure the model so that time-stationary 
density of node position is a given bX(x) ?

– Yes. Twist speed as described next

Remarks:
– Speed twisting applies to random trip model, in general
– See [GL06], for random direction model

?
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Speed twist

• Twist function         ?

1

0
0

t = time elapsed on trip

A: original model

1

0
0

  ,     = fraction of traversed trip length

B: twisted model
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Speed twist (2)

• Palm inversion formula: the twist function is given by 
differential equation:

with boundary values un(0) = 0, un(Sn
B) = 1 

and w(x) := aX(x) / bX(x)

• Trip duration may change but its mean remains same:

( )( ) B
n

B
nnA

n

B
n StuPw

S
u

dt

d ≤≤= 0   ,
1

)()( 0
0

0
0 AB SESE =



  95

Speed twist (3)
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node location at time t
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• At location x, speed is inversely proportional to the 
target density bX(x) of location x
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Frequently Asked Questions

• Does model accommodate power-law 
inter-contact times ?

• Does model accommodate heavy-tailed 
trip durations ?

• Can model produce a given time-
stationary distribution of node position ?

• What are mobility data resources ?
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Resources

• Partial list:

– CRAWDAD (crawdad.cs.dartmouth.edu)

– Haggle (www.haggleproject.org)

– MobiLib (nile.usc.edu/MobiLib)

– Street maps: 
• U.S. Census Bureau TIGER database (

www2.census.gov/geo/tiger)
• Mapinfo (www.mapinfo.com)

http://crawdad.cs.dartmouth.edu/
http://www.haggleproject.org/
http://nile.usc.edu/MobiLib
http://www2.census.gov/geo/tiger
http://www.mapinfo.com/
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Frequently Asked Questions
 » Summary «

• Power-law inter-contact times are captured by some 
random trip models

• Trip duration can be heavy tailed

• Given time-stationary distribution of node position can be 
achieved
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Concluding remarks

• Random trip model covers a broad set of models of 
independent node movements

– All presented in the catalogue of this slide deck

• Defined by a set of stability conditions

• Time-stationary distributions specified by Palm inversion 

• Sampling algorithm for perfect simulation
– No initial transience
– Not necessary to know geometric constants 
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Future work

• Realistic mobility models ?

• Real-life invariants of node mobility ? 
– Human-carried devices, vehicles, …

• What extent of modelling detail is enough ?

• Scalable simulations ?

• Algorithmic implications ?

• Scalable simulations ? 

• Statistically dependent node movements 
– Application scenarios, models ?
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