

1

Route Driven Gossip Probabilistic Reliable Multicast in Ad Hoc Networks

J. Luo, P. Th. Eugster, and J.-P. Hubaux

Swiss Federal Institute of Technology in Lausanne

Background

- Problem definition and network model
- Protocol description
- ✤ Results
- ✤ Conclusions

Multicast Reliability in Wired Networks

Reliability

Existing Solutions in Ad Hoc Networks

K Unreliable multicast protocols

Multicast Ad hoc On Demand Distance Vector (MAODV) [RoyerP99]

Science Constant Content of Contrast Contrast Routing Protocol (ODMRP) [LeeGC99]

Best-effort multicast protocols

« Adaptive Reliable Multicast Protocol (ARMP)

∞ Reliable Broadcast Protocol (RBP)

Reverse Probabilistic reliable multicast protocols

∞ Anonymous Gossip (AG)

[ChandraRB01]

[GuptaS99]

[PaganiR99]

« Reliable multicast protocols

z ???

- ✤ Background
- Problem definition and network model
- Protocol description
- ✦ Results
- ✤ Conclusions

Problem Definition

- ✓ Probabilistic reliability: If some group member sends out a flow of *M* packets, a certain group member receives a fraction ? of all packets with probability p_M (?). ? and *p* are termed *reliability degree* and *reliability probability distribution* respectively
- ✓ Predictability: The reliability p_M (?) of the protocol is predictable given simple information about the network, like packet loss ratio
- Scalability: Reliability only degrades modestly with the increase of network size and mobility

Assumptions

- CSMA/CA MAC (e.g., IEEE 802.11) provides reliable, sequenced single-hop unicast by RTS/CTS–Data/Ack handshake sequence
- **∠** Assumptions on mobile nodes:
 - ∠ Unique node identifier *id*

 - ∠ No Byzantine failures

- ✤ Background
- Problem definition and network model
- Protocol description
- ✤ Conclusions

Basic Data Structures and Operations

Optimization: Topology-aware RDG

- ✓ Locality of the traffic can reduce network load
- **Routing protocol can provide partial topology information**
- ∠ Always gossiping locally may create logical partition
- ∠ Approach:

 P_1, P_2 ? the reciprocal of the routing path length

✤ Background

- Problem definition and network model
- Protocol description
- ✤ Results
- ✤ Conclusions

✤ Background

- Problem definition and network model
- Protocol description
- ✤ Results
- ✤ Conclusions

Simulation Model

- *∝* Simulator: *ns-2*
- Network nodes are randomly distributed in a 1000m?1000m square
- MAC: IEEE 802.11, 2Mbps, 250m nominal transmission range
- **Mobility pattern: Random Way-point Model**
- Traffic pattern: CBR with 64 bytes packet at a interval of 200ms. The gossip period is also set to 200ms
- ✓ Simulation period is 280s, 1400 packets are multicast
- *∝* The group size is half of the network size

Reliability of the Gossip — Single Packet Dissemination Reliability

Average number of infected members (simulation results) at a certain time against expected number of infected members (analytical results), for a given round with n=50. The maximum node speed is 2m/s. (a) $?_q=1$ with different values of *F*. (b) $F=3_{14}$ with different $?_q$.

Reliability of the Gossip — Reliability Probability Distribution $p_M(?)$

(a) The performance of the protocol in a group of n=50 with maximum node speed varying from 2m/s to 20m/s. (b) The performance of the protocol with group size varying from 50 to 100 while the maximum node speed is 2m/s. The design parameters are F=3 and $?_q=1$ for both cases.

15

Conclusions and Future Work

- RDG is a gossip-based multicast protocol for ad hoc networks, with the following features:
 - Probabilistic reliability
 - Predictable reliability thanks to analysis
 - ✤ Scalability
 - No support from underlying multicast primitive
- Possible future work:
 - Further optimizations, e.g., using existing unreliable multicast primitives
 - Building block for further group communication protocols

Thanks for your attention !

Any Questions ?