# Interference-Aware Channel Assignment in Multi-Radio Wireless Networks 

K. N. Ramachandran, E. M. Belding, K. C. Almeroth, M. M. Buddhikot

## Motivation

- If the capacity problem is the major concern,
- Why not considering multiple radios for mesh-net backbone routers?
- Multiple radios is expensive than single radio
- Still worth looking into for future
- With multiple radios,
- Static vs dynamic channel allocations
- If dynamic,
- Local or global?


## Constraints


(a)

(b)

(c)

Fig. 1. Network topology with varying channel assignments.

## Constraints

- Subsequent node failures --> network partitions
- Topology alterations can result in sub-optimal routes wrt some metrics
- Altering network topology affects existing flows
- Suggestion: default radio interface for both control an data!
- Flow redirection


## Centralized Approach



## Centralized Approach

- Minimize interference between routers in the mesh
- Minimize interference between the mesh network and wireless networks co-located with the mesh!- huh?


## Interference Modeling

- Multi-radio Conflict Graph (MCG)

(a)

(b)

(c)


## Dynamic Channel Assignment

- Default channel selection
- The least interfered channel
- $\quad R_{c}=\frac{\sum_{i=1}^{n} \operatorname{Rank}_{c}^{i}}{n}$
- Non-default channel selection:
- Create MCG
- breadth first search (BFS)
- Channel re-assign strategy:
- Interference estimation, how frequently? 100ms?
- How frequently?: 10 (ms, s, m)

```
Algorithm 1 BFS-CA Algorithm
    Let \(V=\{v \mid v \in \mathrm{MCG}\}\)
    while notAllVerticesVisited \(\{V\}\) do
        Let \(h=\) smallestHopCount \((V)\)
        \(Q=\{v \mid v \in V\) and notVisited \((v)\) and hopcount \((v)==h\}\)
        sort \((Q)\)
        while \(\operatorname{size}(Q)>0\) do
            \(v_{\text {current }}=\) removeHead \((Q)\)
            if visited( \(v_{\text {current }}\) ) then
                continue
                    end if
            visit( \(v_{\text {current }}\) )
            \(V_{n}=\left\{u \mid u \in\right.\) MCG and edgeInMCG \(\left(u, v_{\text {current }}\right)==\) TRUE \(\}\)
            permanently assign highest ranked channel \(c\) from \(v_{\text {current }}\) 's chan-
            nel ranking that does not conflict with \(u_{i},\left\{u_{i} \in V_{n}\right.\) and \(0 \leq i<\)
            \(\left.\operatorname{size}\left(V_{n}\right)\right\}\)
            if \(c\) does not exist then
                permanently assign random channel to \(v_{\text {current }}\)
            end if
            \(L=\left\{v \mid v \in \mathrm{MCG}\right.\) and \(v\) contains either radio from \(\left.v_{\text {current }}\right\}\)
            removeVerticesInList FromMCG( \(L\) )
            tentatively assign \(c\) to radios in \(L\) that are not part of \(v_{\text {current }}\)
            Let \(r_{f}\) be router with interface in \(v_{\text {current }}\) that is farthest away
            from gateway
21: Let Tail \(=\) list of all active \(v(v \in \mathrm{MCG})\) such that \(v\) contains an
            interface from \(r_{f}\)
            sort( \(T\) )
            addToQueue(Q, Tail)
            end while
            permanently assign channels to radios that are unassigned a permanent
            channel.
26: end while
```


## Implementations?

- Channel assignment protocol
- Assume a reliable broadcasting protocol which delivers a new channel assignment to all nodes
- Interference estimation
- Every 100ms
- Link delay estimation
- ETT (Expected Transmission Time)


## Simulation Setting

- 30 routers
- $500 \times 500 \mathrm{~m}$
- Topologies
- 1. cells, random distribution in each cell
- 2. same as 1 with different seeds
- 3. grid topology (dense network)
- 4. random in $500 \times 500 \mathrm{~m}$


## Flow scenarios

- Scenario 1: 10 2-minute FTPs from periphery to the gateway, one at each time
- Scenario 2: multiple flows at the same time
- Scenario 3: internal and external interferences


## Results (Scenarios 1 and 2)




## Results, scenario 3


(b) Topology 2

(d) Topology 4

