Detection and Handling of MAC Layer Misbehavior in Wireless Networks

Pradeep Kyasanur Nitin H. Vaidya

Coordinated Science Laboratory University of Illinois at Urbana-Champaign

Problem Definition

Network

Ad hoc Network

Nodes may violate Medium Access Control rules

IEEE 802.11 overview

- Distributed Coordination Function (DCF) -Mandatory
 - Widely used for channel access
- DCF is a Carrier Sense Multiple Access/ Collision Avoidance (CSMA/CA) protocol

- Carrier sense
 - Don't transmit when channel is busy

- Collision avoidance
 - Defer transmission for random time after channel goes idle

Backoff Example

- Choose backoff value B in range [0,CW]
 - CW is the Contention Window
- Count down backoff by 1 every idle slot

CW=31

Data Transmission

Reserve channel with RTS/CTS exchange

Possible Misbehavior

- Backoff selected from different distribution
 - Select a small constant backoff always

Goals of proposed scheme

- Diagnose node misbehavior
 - Catch misbehaving nodes
- Discourage misbehavior with MAC layer scheme
 - Punish misbehaving nodes

Related work at other layers

- Many proposals for securing network layer
- Designing protocols resilient to misbehavior
 [Savage99, Nisan99, Buttyan01]

Explicitly detect and penalize misbehavior
 [Marti00, Zhang00, Buchegger02, Hu02]

Related work at MAC Layer

- Game-theoretic solutions proposed for selfish misbehavior at MAC layer
 - [Konorski01, MacKenzie01, Konorski02]
- Game-theoretic approach
 - + Protocols resilient to misbehavior
 - Assumptions not always valid
 - Performance may not be good

Solution Approaches

- Misbehaving node can gain more bandwidth
 Use payment schemes, charging per packet
- Misbehaving node can achieve lower delay
 - Send burst of packets ignoring MAC rules
 - Average delay is less with same cost

Payment based schemes not sufficient

Proposed Approach

- Receivers detect sender misbehavior
 - Assume receivers are well-behaved (can be relaxed)

- Receiver does not know exact backoff value chosen by sender
- Wireless Channel introduces uncertainties

Use long-term statistics

Observe backoffs chosen by sender over multiple packets

Selecting right observation interval difficult

Alternate Approach

- Receiver provides backoff values to sender
 - Send in current transmission backoff value for next transmission
- Receiver can then accurately observe sender behavior

Uncertainty of sender's backoff eliminated

Modifications to 802.11

1. R provides backoff B to S in ACK

B selected from $[0, CW_{min}]$

2. S uses B for backoff

1. Detect deviations: Receiver observes one transmission from the sender

3. Penalize deviations: Penalty is added, if the sender appears to have deviated

5. Diagnose misbehavior: Based on last W observations, diagnose misbehavior

Detecting deviations

Receiver counts number of idle slots B_{obsr}

Condition for detecting deviations:

 $B_{obsr} < \alpha B \qquad 0 < \alpha <= 1$

Penalizing Misbehavior

- When $B_{obsr} < \alpha B$, penalty P added
 - P proportional to $\alpha B B_{obsr}$
- Total backoff assigned = B + P

Penalty Scheme issues

With penalty, sender has to misbehave more for same throughput gain

- Misbehaving sender has two options
 - Ignore assigned penalty → Easier to detect
 - Follow assigned penalty → No throughput gain

Diagnosing Misbehavior

Total deviation for last W packets used
 Deviation per packet is B – B_{obsr}

If total deviation > THRESH then sender is designated as misbehaving

 Higher layers/ administrator can be informed of misbehavior

Simulation Results

- Using ns-2 simulator
- Misbehavior modeled by parameter "Percentage of Misbehavior (PM)"
 - PM = 0% → well-behaved
 - Larger PM → greater misbehavior
- Results for one receiver, multiple senders with single misbehaving sender

Simulation Setup

Results – Diagnosis Accuracy

Percentage of Misbehavior (of misbehaving node)

Misbehaving node throughput

Percentage of Misbehavior

Throughput – no misbehavior

Number of sender nodes

Simulation Observations

- Diagnosis accuracy is high
 - Diagnosis accuracy depends on channel conditions
 - Persistent misbehavior detected with high accuracy
- Adding penalty negates throughput advantage
 - Can discourage misbehavior

Additional details in paper

- Mechanisms to address protocol response after packet collisions
- Extensions for catching certain receiver misbehavior
- Preliminary ideas for addressing collusion

Conclusion

- MAC layer misbehavior can severely affect throughput of well-behaved nodes
- We present simple modifications to IEEE 802.11 to detect/penalize misbehavior
- Open issues:
 - Collusion detection
 - Integrate diagnosis scheme with higher layers

Thanks! kyasanur@uiuc.edu http://www.crhc.uiuc.edu/~kyasanur

- [Savage99] TCP Congestion Control with a misbehaving receiver
- [Nisan99] Algoithms for Selfish Agents
- [Buttyan01] Stimulating Cooperation in Self-Organizing Mobile Ad Hoc Networks
- [Marti00] Mitigating Routing Misbehavior in Mobile Ad hoc Networks
- [Zhang00] Intrusion Detection in wireless ad hoc networks
- [Buchegger02] Nodes Bearing Grudges: Towards Routing Security, Fairness and Robustness in Mobile Ad Hoc Networks
- [Hu02] Ariadne: A secure on-demand routing protocol for ad hoc networks
- [Konorski01] Protection of Fairness for Multimedia Traffic Streams in a Non-cooperative Wireless LAN setting
- [MacKenzie01] Selfish users in Aloha: A Game-theoretic Approach
- [Konorski02] Multiple Access in Ad Hoc Wireless LANs with Noncooperative stations

Extra Slides follow

Collision Example

- On collision double CW
 - Binary exponential backoff algorithm
- Pick new backoff and send again

Modifications to 802.11

1. On collision new backoff b2 is

b2 = f(b1, nodeld of S, attempt number)

2. RTS contains attempt number

Handling other misbehavior (1/2)

- Receiver may misbehave by assigning large or small backoff values
- Sender can detect receiver assigning small backoff values
 - Backoff assigned by receiver has to follow well-known distribution
 - Sender uses larger of assigned backoff and expected backoff

Handling other misbehavior (2/2)

- Detecting receiver assigning large backoff values not handled
 - Equivalent to receiver not responding at all
 - Need higher layer mechanisms
- Collusion between sender and receiver
 - Harder to detect
 - Requires third party observer

Simulation Metrics

Correct Diagnosis percentage

Misdiagnosis Percentage

Average throughput of well-behaved nodes

Misbehaving node throughput

Fairness - no misbehavior

Number of sender nodes